AI芯片与未来:DPU、GPU、NPU、ASIC和FPGA

智能计算芯世界 2023-04-15 00:00

目前用于深度学习最广泛的芯片当属擅长并行计算的 GPU,而随着深度学习对算力要求的不断提升,各家公司开始研发生产专用于深度学习、DNN 的运算芯片或基于 FPGA 架构的半定制芯片,代表产品有 Google 研发的张量计算处理器 TPU、寒武纪研发的神经网络计算处理器 NPU 以及 Intel 旗下的 Altera Stratix V FPGA。目前各类芯片各有优劣,未来或将出现GPUFPGA、“XPU”分别对应不同算力要求、产品结构的运算芯片市场。

下载链接:
AI技术芯片与未来(DPU、GPU、NPU、ASIC、FPGA)
《70+篇半导体行业“研究框架”合集》
203份重磅ChatGPT专业报告
《人工智能AI大模型技术合集》
《AIGC政策、安全和未来发展》
1、网信办发文,高度重视AIGC安全
2、规范性政策或促进AIGC产业长期健康发展
《46份智能网卡和DPU合集》
医疗AI产业:AI大模型+医疗龙头公司
商汤日日新大模型发布,目标瞄准AGI时代

以昇思为基,盘古生态引领中国AI未来

当前市场上主要有通用类(GPUDPU)、FPGA(半定制)、ASIC(全定制)三大类 AI 计算芯片。其中 GPU 目前市场使用率最高,商业化较为成熟,全球最主要的供应商是英伟达。而以 FPGA ASIC 架构研发出的 AI 芯片种类较多,目前尚处于发展探索阶段,例如较为知名的 NPUTPU 就是以 ASIC 架构为基础设计的。

1. GPU:通用性最强,AI 计算时代霸主

GPU,源于图形处理的 AI 计算芯片。GPUGraphics Processing Unit),即图形处理器,又称显示核心、视觉处理器、显示芯片,起初是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上做图像和图形相关运算工作的微处理器,是一种由大量运算单元组成的大规模并行计算架构,专为同时处理多重任务而设计。大数据时代,GPU 被广泛应用于数据中心、矿机、深度学习等领域。GPU 芯片采用统一渲染架构,计算通用性最强,可以适用于多种算法,在算法尚未定型的领域,GPU是最佳选择。

GPU AI 计算市场销售额占比最大,霸主地位稳固。目前大多数领域,AI 计算算法尚在不断探索、优化阶段,GPU 仍是最佳选择。根据智研咨询数据显示,截至 20218 月,全球人工智能的计算力主要是以 GPU 芯片为主,2020 年销售额市场份额占比约为 42.3%,市场规模约为 38 亿美元,预测到 2024 年销售额占比提升至 51.4%,届时全球人工智能 GPU 芯片市场规模将达 111 亿美元。

2. FPGA:半定制芯片,灵活性高

FPGA 是一种半定制芯片。FPGAFieldProgrammable Gate Array),现场可编程门阵列,用户可以根据自身的需求进行重复编程。FPGA 的优点是既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点,对芯片硬件层可以灵活编译,功耗小于 CPUGPU;缺点是硬件编程语言较难,开发门槛较高,芯片成本、价格较高。FPGA GPUCPU 更快是因为其具有定制化的结构。

CPU GPU 都属于冯·诺依曼结构,在该结构中,执行单元可以执行任意指令,这需要有指令存储器、译码器、各种指令的运算器等和共享内存。而 FPGA 的每个逻辑单元的功能在重编程时就已经确定,不需要指令和共享内存。但这也是 FPGA 的缺点,当处理的任务重复性不强、逻辑较为复杂时,FPGA 效率就会低于使用冯·诺依曼结构的处理器。

3. ASIC:专用性最强,追求极致性能

ASIC 是一种为专门目的而设计的芯片(全定制)。ASIC特殊应用集成电路芯片,是一种根据特定算法定制的芯片架构,其定制程度相比于 GPU FPGA 更高。ASIC 算力水平一般高于 CPUGPUFPGA,但初始投入大,专业性强缩减了其通用性,算法一旦改变,计算能力会大幅下降,需要重新定制。

算力需求增加,ASIC 前景广阔。随着数据量的不断增加和芯片工艺的极限到来,对算力的诉求越来越难以被满足。在此背景下,对于一些特定的领域,其数据量庞大,算法逐渐固定,使用专为特定算法设计的 ASIC 芯片成为了许多公司的首选。AI 计算市场上比较火的 TPUNPU 等,都是 ASIC 专用芯片。

4. DPUGPU 之后分担 CPU 算力又一芯片

DPU 是一个全新的,用于在数据中心承担网络和存储等服务的处理器。DPU(Data Processing Unit),数据中心处理器是最新发展起来的专用处理器,主要是用来加速数据中心的安全、网络和存储任务。它是继 CPUGPU 之后,数据中心场景中的第三颗重要的算力芯片,为高带宽、低延迟、数据密集的计算场景提供计算引擎。DPU 将卸载 CPU原本承担的网络、存储、安全、管理等服务,释放 CPU 算力,同时对安全隐私进行高级别的加密。在 2021 4 月的 GTC 大会上,英伟达总裁黄仁勋推出了 NVIDIA BlueField-3 DPU 及其配套软件生态架构 DOCA

DPU 的提出能够有效解决 CPU Memory 之间传输带宽的瓶颈。随着数据量的增加,CPU Memory 之间的数据传输带宽成了瓶颈。根据 Fungible AWS 的统计,在大型数据中心中,流量处理占到了计算的 30%左右。数据中心在节点间交换效率和可靠性以及节点内 I/O 切换效率比较低,DPU 的出现是为了试图解决这种松耦合的关系,从这方面加快整体运算速度。目前来看 DPU 只是提供更安全高效的网络、存储等加速服务,但未来或将真正的以数据中心为运算单元,依靠 DPU 实现紧耦合结构提升整体效率。

5. NPU TPU:深度学习 ASIC 加速芯片

NPU 是一种参考人体神经突触的 ASIC 芯片。随着深度学习神经网络的兴起,CPUGPU 逐渐难以满足深度学习的需要,专门用于神经网络深度学习的处理器NPU(Neural Processing Unit)应运而生。NPU 采用“数据驱动并行计算”的架构,特别擅长处理视频、图像类的海量多媒体数据。区别于 CPU 以及 GPU 所遵循的冯诺依曼架构,NPU 参考人体的神经突触结构,将存储与运算结为一体。

NPU 显著提高了深度学习芯片的运算速度。深度学习芯片主要分为训练芯片和推理芯片。深度学习神经网络算法像人一样,需要学习知识(训练),之后就可以把学习到的知识运用到工作中去(推理)。训练过程需要大量的数据样本进行计算,而推理过程需要用少数的数据快速得出推理结果。NPU 在电路层模拟人类神经元和突触,相比于 GPU的冯诺依曼结构,NPU 通过突触权重实现存储计算一体化,提高运行效率,因此 NPUGPU 更擅长推理。

TPU,专门为 Google Tensorflow 框架设计的 ASIC 芯片。张量处理器(Tensor Processing Unit)是 Google 为机器学习定制的 ASIC 芯片,专为 Google 的深度学习框架TensorFlow 而设计。Google 2016 年的 Google I/O 年会上首次公布了 TPU,不过在此之前 TPU 已在 Google 内部的一些项目中使用了一年多,如 Google 街景服务、RankBrain以及其旗下 DeepMind 公司的围棋软件 AlphaGo 等都用到了 TPUTPU 只完成推理过程,训练过程由 GPU 完成。

新计算模式不断出现,底层架构持续创新

AI 计算蓬勃发展,新计算模式不断出现。随着各大厂商对 AI 芯片的不断研究,芯片的计算性能不断提升,芯片种类不断增多。截至 2021 8 月,GPU AI 计算市场份额最大,但 FPGAASIC 的发展迅速,有望取代一部分 GPU 的业务。与此同时,DPU的不断运用也将有效改善和加速网络数据传输计算速度,协同 CPUGPU 高效运行。

当前 CPU 依然处于计算芯片中的核心地位,GPUDPU 目前也只能卸载 CPU 部分功能,加快 CPU 处理、运算的效率,并没有根本动摇 CPU 地位。目前在人工智能、深度学习和云计算等领域以 CPU+GPU 为主要场景,CPU+FPGACPU+NPU 等模式不断推出,未来有望出现更先进的模式。

下载链接:

多模态AI研究框架(2023)

大模型算力需求驱动AI服务器行业高景气(2023)

“机器人+” 系列:机器人研究框架(2023)

《70+篇半导体行业“研究框架”合集》
183份重磅ChatGPT专业报告
《人工智能AI大模型技术合集》

1、大模型算力需求驱动AI服务器行业高景气(2023) 2、多模态大模型技术演进及研究框架 3、大模型遇到金融:海内外金融领域大模型对比 4、大模型如何影响网安行业的未来 5、大模型应用百花齐放,AI发展进入新时代 6、详解大模型训练与推理对算力产业链的需求影响 7、训练大模型发展前景及思考和探讨—华为诺亚方舟实验室 8、人工智能通用大模型(ChatGPT)的进展、风险与应对 9、ChatGPT引发的大模型时代变革 10、中国大模型发展白皮书(2023年) 11、中国大模型发展白皮书—元能力引擎筑基智能底座(2023年) 12、“源1.0”大模型技术白皮书

本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。



免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。

电子书<服务器基础知识全解(终极版)>更新完毕。
获取方式:点击“小程序链接”即可查看182页 PPT可编辑版本和PDF阅读版本详情。

服务器基础知识全解PPT(终极版)

服务器基础知识全解PDF(终极版)


温馨提示:
请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  •     CTI是Comparative Tracking Indices的缩写,在GB 4207中被译作“比较追踪指数”,我认为还是“漏电起痕指数”更容易理解。    CTI表述了材料的绝缘特性——阻止不希望出现的电流。CTI的单位是V,在绝缘物表面添加一定量的电解液并施加电场,观察在绝缘物表面既不会持续产生火焰,也不会因为热、介质击穿、湿气或者污染物产生电弧放电留下痕迹(起痕)的最高电压。CTI的测量方法见IEC 60112 (GB 4207)。&nbs
    电子知识打边炉 2025-04-19 21:20 57浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 148浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 168浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 204浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 150浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 203浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 165浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 121浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 192浏览
  •     爬电距离指的是两个带电体之间、带电体和大地之间,沿着绝缘材料表面的最短距离。与爬电距离有关的标准有IEC 61010-1。PCB设计方面,可以参照IPC-2221B。        (图源TI)    任何情况下,爬电距离不允许小于电气间隙。当绝缘材料是空气时,爬电距离可以和电气间隙相等。电气间隙的简介见协议标准第011篇。        一般情况下
    电子知识打边炉 2025-04-19 20:54 51浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 110浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦