硫化物固态电池正极、负极的制备及电池组装方法

锂电联盟会长 2023-04-13 10:31

即可关注!

近年来,包括Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al 或P)、 Li6PS5X(X=Cl、Br、I)在内的硫化物固体电解质的快速发展,特别是以Li10GeP2S12(LGPS)为代表的展现出超过液态电解质的12mS/cm极高室温锂离子电导率thio-LISICON结构硫化物,已部分解决了固体电解质的本征电导不足的缺点。
图1(a)所示为使用室温电导率超过5mS/cm 的Li10Ge2PS12陶瓷固体电解质粉体冷压成型片,LiCoO2正极材料,99%·(30Li2S·70P2S5)·1%P2O5电解质作负极侧修饰电解质,金属锂作负极的全固态锂电池,其在室温下可以正常放电工作,点亮LED灯。其核心部件结构示意图如图1(b)所示,从中可以看出,正极层、无机固体电解质层、锂箔贴合紧密地压实在模具中。下面对其各部分组成的制备方法及过程进行详细介绍。
图1 硫化物固体电解质基全固态锂电池
1 正极的制备方法
硫化物电解质粉体杨氏模量在20GPa左右,附着力大、可压缩性大,易发生塑性形变,冷压成型后晶界阻抗小,因此在正极层制备时,适合与正极粉体进行直接干混[图2(a)]。干混时在研钵中同时加入导电剂、硫化物电解质、正极材料后,进行手工研磨,或在搅拌器中进行机械混合操作。需要注意的是,不同正极材料与电解质的匹配性、不同导电剂、不同正极包覆层的适用场合需要进行实际条件下的考量。
图2 硫化物固体电解质基全固态锂电池正极制备方法
在大批量卷对卷制备硫化物电池时,湿法涂布工艺[图2(b)]可能更适合放大。这是由于为了提供高通量卷对卷工艺所需的力学性能,需要使用聚合物黏合剂、溶剂来制作薄膜电解质层和电极层。此外,电解质/电极中柔性聚合物的存在可以有效地缓冲在反复充放电循环由产生的应力和应变,并减轻例如裂纹的形成和颗粒的脱落等问题。

但在制备过程中需要注意以下问题:应将聚合物黏合剂溶于与硫化物的反应性可忽略的非极性或极性较小的溶剂(例如二甲苯)中;应使用黏合能力强的聚合物黏合剂,否则过量的聚合物将对电导率、电解质/电极的热稳定性带来不利影响;聚合物黏合剂需具有较高的柔性,尽管聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)之类的聚合物可以溶解在二甲苯中,但是在溶剂干燥后它们极其坚硬,会使得电解质/电极粉碎,故大多数工作选择了丁腈橡胶(NBR)和丁苯橡胶等。不过橡胶的问题在于其无法在内部产生离子电导,这使得即便仅使用少量丁腈橡胶,电池的电化学性能也会显著下降。为此,使用高离子电导、高热稳定性、可溶于非极性或极性较小的溶剂、不溶解多硫化物的聚合物,是今后硫化物电解质湿法涂布发展的方向。

不过,在上述过程中的湿法制浆会使用大量溶剂,这将必然导致部分溶剂小分子残留在混合物,进而发生副反应,从而使电解质电导率下降、电池寿命衰减严重;溶液中的聚合物黏结剂对活性材料的包裹程度不易控制,容易导致传荷失效;溶剂的挥发导致电极片的致密度较低,不利于电池的动力学过程;此外规模化后溶剂的排放和回收也是不可回避的问题。

因此利用PTFE的干法涂布技术[图2(c)]成为了另一种选择。它主要包括3个步骤:将电解质、电极、PTFE球磨干混;将粉末辊压成薄膜;将薄膜与集流体辊压成型。由于PTFE中氟-碳链分子间作用力极低,分子链柔顺性好,大分子量的PTFE细粉颗粒在定向力的作用下会产生纤维化的现象,即颗粒内的微粒子在剪切力的作用下呈一定方向规则排列形成纤维状和网状结构,所以可以将大量的活性材料、电解质、导电碳进行紧密但不完全覆盖式地连接。

2 负极的制备方法
thio-LISICON结构三元硫化物电解质电导率较高,但据实验及计算工作报道,金属锂与LGPS、Li10Sn2PS12等自发地并逐渐延伸的界面反应,会产生一些低离子导电如Li2S、Li3P等和高电子电导如Li15Ge4等界面相,导致Li/LGPS的界面阻抗增大和全固态锂电池短路,严重制约了其高能量密度全固态锂电池的发展。为提高硫化物电解质尤其是三元含锗、锡、锌等硫化物对金属锂化学/电化学稳定性,目前主要有3种解决方法。

(1)将金属锂表面进行处理,原位生成表面离子电导修饰层,以保护硫化物电解质。如图3(a)所示,Zhang等通过控制Li与纯H3PO4反应所形成的LiH2PO4保护层,实现了增加修饰层与金属锂的接触面积,避免了金属锂与LGPS的直接接触,阻止了混合离子电子电导中间相向LGPS内部的渗透,以及改善了界面锂离子动力学迟缓问题。结果显示,通过LiH2PO4的修饰,LGPS的对锂稳定性显著提高,LCO/LGPS/LiH2PO4-Li全固态锂电池可以提供超长的循环寿命和高容量,即在25℃、0.1C倍率下,其第500个循环的可逆放电容量保持在113.7mA·h/g,保持率为86.7%。Li/Li对称电池在0.1mA/cm2电流密度下则可稳定循环950h以上。
图3 硫化物固体电解质基全固态锂电池负极修饰方法
2)采用一层对金属锂稳定的过渡层硫化物电解质,对另一层进行保护。如图 3(b)所示,Yao等提出了一种LGPS/LPOS双层电解质结构用于提高LGPS/Li界面的离子传导和稳定性,并在各种电池系统中取得了良好的效果,但较厚的双层电解质可能会降低电池整体的质量能量密度。其装配方式即先将一层电解质进行冷压后,在其表面再次冷压一层电解质,而后叠加正极、负极,一起施压。

3)在电解质表面(电解质/电极界面)原位生成一层修饰层。如图3(c)所示,Gao等使1 mol/LLiTFSI DOL-DME电解液滴加至LGPS/Li界面处生成了LiO-(CH2O)n-Li、LiF、-NSO2-Li、Li2O等有机无机混合锂盐,使Li/LGPS/Li对称电池在0.1mA/cm2下稳定循环3000h。Chien等使用固态核磁成像研究发现Li/LGPS/Li对称电池循环后界面Li发生了明显缺失,而通过涂覆PEO-LiTFSI后可以改善界面Li 的不足以及其不均匀沉积。上述方法在一定程度上改善了硫化物电解质与金属锂负极的相容性,但同时也可能存在如滴加电解液原理尚未厘清、添加聚合物导致电解质热稳定性降低等问题。
图4 硫化物固体电解质基全固态锂电池装配方法
2.3 硫化物固体电解质基全固态锂电池的组装方法
硫化物固体电解质基全固态锂电池装配方面,如图4所示,主要分以下步骤:电解质加压成型,一般施压压力为120~150MPa;正极加压成型,并贴上钢片做集流体,一般施压压力为120~150MPa;负极加压成型,对金属锂来说一般施压压力为120~150 MPa,对于石墨来说一般施压压力为250~350 MPa,并贴上钢片做集流体;④电池螺栓拧合。需注意油压机表头示数应根据实际电池模具形态进行换算,同时在装配时防止电池短路。

文献参考:崔言明, 张秩华, 黄园桥,等. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3):12.
欢迎咨询,18058218622
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 234浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 206浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 284浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 239浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 390浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 240浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 257浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 299浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 182浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 288浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦