硫化物固态电池正极、负极的制备及电池组装方法

锂电联盟会长 2023-04-13 10:31

即可关注!

近年来,包括Li2S-SiS2、Li2S-B2S3、Li2S-P2S5、Li(10±1)MP2S12(M=Ge、Si、Sn、Al 或P)、 Li6PS5X(X=Cl、Br、I)在内的硫化物固体电解质的快速发展,特别是以Li10GeP2S12(LGPS)为代表的展现出超过液态电解质的12mS/cm极高室温锂离子电导率thio-LISICON结构硫化物,已部分解决了固体电解质的本征电导不足的缺点。
图1(a)所示为使用室温电导率超过5mS/cm 的Li10Ge2PS12陶瓷固体电解质粉体冷压成型片,LiCoO2正极材料,99%·(30Li2S·70P2S5)·1%P2O5电解质作负极侧修饰电解质,金属锂作负极的全固态锂电池,其在室温下可以正常放电工作,点亮LED灯。其核心部件结构示意图如图1(b)所示,从中可以看出,正极层、无机固体电解质层、锂箔贴合紧密地压实在模具中。下面对其各部分组成的制备方法及过程进行详细介绍。
图1 硫化物固体电解质基全固态锂电池
1 正极的制备方法
硫化物电解质粉体杨氏模量在20GPa左右,附着力大、可压缩性大,易发生塑性形变,冷压成型后晶界阻抗小,因此在正极层制备时,适合与正极粉体进行直接干混[图2(a)]。干混时在研钵中同时加入导电剂、硫化物电解质、正极材料后,进行手工研磨,或在搅拌器中进行机械混合操作。需要注意的是,不同正极材料与电解质的匹配性、不同导电剂、不同正极包覆层的适用场合需要进行实际条件下的考量。
图2 硫化物固体电解质基全固态锂电池正极制备方法
在大批量卷对卷制备硫化物电池时,湿法涂布工艺[图2(b)]可能更适合放大。这是由于为了提供高通量卷对卷工艺所需的力学性能,需要使用聚合物黏合剂、溶剂来制作薄膜电解质层和电极层。此外,电解质/电极中柔性聚合物的存在可以有效地缓冲在反复充放电循环由产生的应力和应变,并减轻例如裂纹的形成和颗粒的脱落等问题。

但在制备过程中需要注意以下问题:应将聚合物黏合剂溶于与硫化物的反应性可忽略的非极性或极性较小的溶剂(例如二甲苯)中;应使用黏合能力强的聚合物黏合剂,否则过量的聚合物将对电导率、电解质/电极的热稳定性带来不利影响;聚合物黏合剂需具有较高的柔性,尽管聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)之类的聚合物可以溶解在二甲苯中,但是在溶剂干燥后它们极其坚硬,会使得电解质/电极粉碎,故大多数工作选择了丁腈橡胶(NBR)和丁苯橡胶等。不过橡胶的问题在于其无法在内部产生离子电导,这使得即便仅使用少量丁腈橡胶,电池的电化学性能也会显著下降。为此,使用高离子电导、高热稳定性、可溶于非极性或极性较小的溶剂、不溶解多硫化物的聚合物,是今后硫化物电解质湿法涂布发展的方向。

不过,在上述过程中的湿法制浆会使用大量溶剂,这将必然导致部分溶剂小分子残留在混合物,进而发生副反应,从而使电解质电导率下降、电池寿命衰减严重;溶液中的聚合物黏结剂对活性材料的包裹程度不易控制,容易导致传荷失效;溶剂的挥发导致电极片的致密度较低,不利于电池的动力学过程;此外规模化后溶剂的排放和回收也是不可回避的问题。

因此利用PTFE的干法涂布技术[图2(c)]成为了另一种选择。它主要包括3个步骤:将电解质、电极、PTFE球磨干混;将粉末辊压成薄膜;将薄膜与集流体辊压成型。由于PTFE中氟-碳链分子间作用力极低,分子链柔顺性好,大分子量的PTFE细粉颗粒在定向力的作用下会产生纤维化的现象,即颗粒内的微粒子在剪切力的作用下呈一定方向规则排列形成纤维状和网状结构,所以可以将大量的活性材料、电解质、导电碳进行紧密但不完全覆盖式地连接。

2 负极的制备方法
thio-LISICON结构三元硫化物电解质电导率较高,但据实验及计算工作报道,金属锂与LGPS、Li10Sn2PS12等自发地并逐渐延伸的界面反应,会产生一些低离子导电如Li2S、Li3P等和高电子电导如Li15Ge4等界面相,导致Li/LGPS的界面阻抗增大和全固态锂电池短路,严重制约了其高能量密度全固态锂电池的发展。为提高硫化物电解质尤其是三元含锗、锡、锌等硫化物对金属锂化学/电化学稳定性,目前主要有3种解决方法。

(1)将金属锂表面进行处理,原位生成表面离子电导修饰层,以保护硫化物电解质。如图3(a)所示,Zhang等通过控制Li与纯H3PO4反应所形成的LiH2PO4保护层,实现了增加修饰层与金属锂的接触面积,避免了金属锂与LGPS的直接接触,阻止了混合离子电子电导中间相向LGPS内部的渗透,以及改善了界面锂离子动力学迟缓问题。结果显示,通过LiH2PO4的修饰,LGPS的对锂稳定性显著提高,LCO/LGPS/LiH2PO4-Li全固态锂电池可以提供超长的循环寿命和高容量,即在25℃、0.1C倍率下,其第500个循环的可逆放电容量保持在113.7mA·h/g,保持率为86.7%。Li/Li对称电池在0.1mA/cm2电流密度下则可稳定循环950h以上。
图3 硫化物固体电解质基全固态锂电池负极修饰方法
2)采用一层对金属锂稳定的过渡层硫化物电解质,对另一层进行保护。如图 3(b)所示,Yao等提出了一种LGPS/LPOS双层电解质结构用于提高LGPS/Li界面的离子传导和稳定性,并在各种电池系统中取得了良好的效果,但较厚的双层电解质可能会降低电池整体的质量能量密度。其装配方式即先将一层电解质进行冷压后,在其表面再次冷压一层电解质,而后叠加正极、负极,一起施压。

3)在电解质表面(电解质/电极界面)原位生成一层修饰层。如图3(c)所示,Gao等使1 mol/LLiTFSI DOL-DME电解液滴加至LGPS/Li界面处生成了LiO-(CH2O)n-Li、LiF、-NSO2-Li、Li2O等有机无机混合锂盐,使Li/LGPS/Li对称电池在0.1mA/cm2下稳定循环3000h。Chien等使用固态核磁成像研究发现Li/LGPS/Li对称电池循环后界面Li发生了明显缺失,而通过涂覆PEO-LiTFSI后可以改善界面Li 的不足以及其不均匀沉积。上述方法在一定程度上改善了硫化物电解质与金属锂负极的相容性,但同时也可能存在如滴加电解液原理尚未厘清、添加聚合物导致电解质热稳定性降低等问题。
图4 硫化物固体电解质基全固态锂电池装配方法
2.3 硫化物固体电解质基全固态锂电池的组装方法
硫化物固体电解质基全固态锂电池装配方面,如图4所示,主要分以下步骤:电解质加压成型,一般施压压力为120~150MPa;正极加压成型,并贴上钢片做集流体,一般施压压力为120~150MPa;负极加压成型,对金属锂来说一般施压压力为120~150 MPa,对于石墨来说一般施压压力为250~350 MPa,并贴上钢片做集流体;④电池螺栓拧合。需注意油压机表头示数应根据实际电池模具形态进行换算,同时在装配时防止电池短路。

文献参考:崔言明, 张秩华, 黄园桥,等. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3):12.
欢迎咨询,18058218622
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 44浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 69浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦