NVIDIA芯片启动流程分析

汽车ECU开发 2023-04-13 09:01

入门了解一个芯片的底层硬件架构最好的方式就是掌握其基础的启动时序和电源树设计,并通过一定设计举例梳理出对应的应用策略。因此,本文针对英伟达系列芯片的底层硬件架构所涉及的硬件启动和电源设计将给出详细的原理分析,并通过在自动驾驶系统的设计应用实例给出相应的电源及架构设计策略。


NVIDIA Jetson 作为开发者套件是最简单的入门方法之一,可以将高性能 Arm 内核与NVIDIA 自己的高级 GPU 引擎结合在一起,使其功能强大且易于使用。在这篇文章中,我们将从 Jetson Nano 入手详细分析英伟达系列芯片的启动过程,通过对比分析 Jeston 和 Drive 驱动的区别,总结英伟达系列芯片的整体启动过程原理。


NVIDIA芯片内部启动流程分析


1、加载硬件驱动


首先,芯片启动是需要驱动底层硬件驱动模块,通常行业内称之为BootLoader引导启动方式。该引导流程是引导加载程序执行,从而初始化 SoC 和并未后续加载芯片级上操作系统做准备。


Bootloader 期间需要执行的主要操作包含如下:

  • 初始化存储设备、内存控制器 (MC)、外部内存控制器 (EMC) 和 CPU

  • 设置安全参数

  • 加载和验证固件组件

  • 维护信任链

  • 为各种固件组件创建内存分配

  • 刷写存储设备

  • 引导至操作系统

2、加载软件模块


整个芯片应用软件及操作系统等软件包的启动包含三大部分:引导和电源管理处理器BPMP、平台安全控制器PSC、中央处理单元CPU。对于整个软件启动而言,实际应该是两段式启动加载。类似TI系列的SPL加载方式一样。英伟达系列芯片首先需要进行底层微启动模块MB1的驱动加载,完成如下一些工作:

  • 平台配置,包括 pinmux、GPIO、焊盘电压、SCR 和防火墙;
  • 根据 Memory BCT 初始化 SDRAM;
  • 加载固件,包括初始化 CPU 复合体 (CCplex) 的组件;
  • 对 PMIC 进行编程以启用 VDD_CPU 轨;
  • 创建内存分割;


下图显示了引导软件中的控制流程。



首先,通过业务流程管理平台 BPMP 输入给服务端相应的业务流。业务流程管理平台涉 及如下的资源分散流程。包括通过硬件连接方式初始化启动媒体,并从中加载微驱动器Microboot1(MB1)。

1)BPMP(引导和电源管理处理器)


驱动存储器BootROM (BR) 硬连线到 SoC,它在 BPMP 离开重置状态时开始执行初始化启动媒体,并从存储中加载启动配置表 BR(BCT)、信息安全的平台控制器驱动PSC(BL1)、微启动模块Microboot1 (MB1) 和 模块配置表MB1(BCT),然后停止。


BootROM 引导配置表 (BR-BCT) 的最多四个副本可以存储在引导介质的开头。BR-BCT的每个副本都在“设备擦除扇区大小”边界上对齐,如有必要,副本之间留有空白空间。BR-BCT 包含 BootROM 用于硬件初始化的配置参数以及有关引导加载程序(MB1、MB1-BCT 和 PSC-BL)的信息,包括:尺寸、入口点、加载地址、散列。BootROM 使用此信息来验证和加载 Bootloader 和 MB1-BCT 的组件。


接通电源后,BPMP 会唤醒并执行存储在板载 iROM (BootROM) 中的初始引导代码。在安全环境中,此时的主要目的是验证和初始化所有低级系统功能。这些是基本时钟、内部电 源轨和启动媒体(SD、SPI 等)之类的东西,然后解析启动配置表 (BCT) 以寻找有效的启动配置。


2)平台安全控制器 (Platform security controller,PSC)


前序文章中提到信息安全子系统包括平台安全控制器(PSC)以及信息安全引擎(SE)。其中,PSC-ROM 通过硬连线到 NVIDIA Orin 芯片中。将来自保险丝的 OEM 密钥和来自 RTL 的 NVIDIA 密钥安全地加载到安全引擎中。


安全控制器需要验证和解密引导 ROM 加载的二进制文件。ROM 是 SoC 中的硬件组件,一旦处理器被重置,它就会开始运行。前文提到PSC-ROM 拥有 NVIDIA 和 OEM 身份验证和解密所需的所有密钥。它为 BootROM 提供鉴权和解密服务,并能很好的管控和引导BPMP(即 MB1)和 PSC(即 PSC-BL1)进行下一阶段的服务。


相应的安全启动引导流程顺序如下:


注意:根据 BOOT_SECURITY_INFO 保险丝设置,可选择对 MB1-BCT 进行解密。


引导 ROM 和 PSC-ROM 使用名为 BR_BCT 的引导配置表,其中包含以下信息:


MB1、PSC-BL1、MB1-BCT的BCH存储位置引导链参数 PSC-ROM 使用的调试标志。MB1_BCT 通常不能由客户进行配置,验证 BCH/BCT 中与计算值匹配的 SHA-512 散列。使用 BCH/BCT 中的公钥验证公共签名,并根据其在保险丝中的摘要进行验证。BCH 包含 SHA-512,然后由 PSC-ROM 进行再次验证。


BootROM执行完毕后,PSC-ROM/PSC-BL1释放BPMP R5上的reset,启动Microboot1(MB1),启动流程如下:



MB1 扩展 BootROM 以提供与 PSC-BL1 相同的安全级别。在 MB1 序列期间,将执行以下任务:

  • 设置时钟和安全设置

  • 从 MB1_BCT 初始化平台配置设置
  • 根据MB1引导配置表、MB1_BCT、MEM_BCT初始化SDRAM。
  • 初始化 CCPLEX,包括 MCE FW
  • 加载/验证 NVDEC、BPMP-FW、PSC-FW 和 TSEC 固件
  • 加载 SC7 固件并准备 SC7 上下文
  • 加载/验证

3)CPU Microboot1(MB1)


该模块运行在 BPMP 之上,是BootROM在 AOTZRAM 中加载的第一个引导软件组件。它初始化 SoC 的某些部分,并执行安全配置。MB1 由 NVIDIA 拥有的密钥签名和加密。


下图显示了它的控制流程。



安全启动过程需要找到有效的 BCT,它将加载 TegraBoot 二进制文件并传输到在非安全环境中运行的二进制文件中。TegraBoot 有不同的二进制文件,一种用于冷启动路径,一种用于热启动。


重置或开机被定义为“冷”启动,“热”启动是从挂起状态恢复。热启动将执行一组不同的配置。一个单独的“恢复”模式二进制文件用于通过 USB 处理与闪存/升级路径的通信。它的使用取决于开机时的 GPIO 引脚状态和连接的有效外部 USB 主机。如果未找到有效的 BCT, 它也会进入此状态(例如,首次从生产中启动) 。在正常的“冷”引导流程中,TegraBoot 将加载 CCPLEX 相关引导加载程序、EL3 监控程序包(Arm Trusted Firmware,ATF)、挂起模式支持固件和更全面的引导加载程序,称为 CBoot。


注意:所有时间戳都与开机有关,输出来自BPMP,直到它停止。系统设备树二进制文件也被加载,内核和引导加载程序允许有不同的版本,但实际上在大多数情况下它们往往是相同的副本。


CCPLEX 的主要 EL2 引导加载程序是 CBoot,该二进制文件被加载到主系统内存中并设 置为下一个可执行文件。当主 CCPLEX 启动时,它将执行转移到之前加载的 CBoot 二进制 文件。


SC7 挂起模式固件与运行时 BPMP 固件一起加载,这是该处理器执行的非引导加载程序 相关代码。加载 EL3 监视器/ATF 包并检查其完整性。为下一阶段的启动加载了所有内容,主 CCPLEX 被释放并且 BPMP 自行停止。将在稍后的过程中重新启动,之前加载的 BPMP-FW 将充当主要 CCPLEX 访问电源管理和低级系统控制功能的通信路径(通过共享内存邮箱和 PSCI)。


TZ(Trusted Zone),ATF(ARM Trusted Firmware) ;是 ARM 在 Arm V8 引入的安全解决方案,为安全提供了整体解决方案。包括启动和运行过程中的特权级划分,对Trust Zone(TZ)的优化,补充了启动过程信任链的传导,细化了运行过程的特权级区间。


基于NVIDIA芯片的自动驾驶系统架构电源设计及启动流程


这里以单 Orin系列 实现的架构方案来说明如何针对性的进行域控层级的启动时序与电源管理 BPMP 。


英伟达系列芯片的启动过程包含:冷启动、热启动、深睡眠(SC7)、电源管理。其中电源管理包含底层时钟管理(存储控制器频率交换机)、Orin芯片系列电源状态管理,进程、电压和温度传感器管理。整个驱动与电源管理包含一个 ARM Cortex-R5 处理器,该处理器有双精度浮点单元(FPU)。双精度 FPU 的这种特性包含了板上 Cortex-R5(比如 AON 和 RCE)簇的所有特性。内置的两个紧耦合的存储单元:ATCM 和 BTCM,可以分别存储片上驱动 ROM 和一个128KB 的 RAM(用于执行延迟关键代码)。驱动与电源管理的另一些特性是还有矢量中断控制器、计时器、直接内存访问(DMA)、NIC、地址映射逻辑、Debug 调试等,这样可以确保对驱动和电源管理的完整支持。


1、Orin PMIC 


Orin-x系列芯片电源包含一个电源序列 VRS-10,高电流电压矫正器(HCVR)VRS-11,VRS-12 电压监视器和电流电压矫正器(LCVR),VRS-10 提供了基于多电压矫正器的事件测序输出, 这样就可以存储到六个 OTP 序列用于上下电,SC7 的进入/退出。由于 Orin-n 不再需要 DLA 和 PVA,因此 VDD_CV 轨也就不再需要。此外,在 VDD_GPU 的电源轨也仅仅是单相的。


2、MCU PMIC 


安全的 MCU 可用于功能安全,其中包含监控和控制 Orin 芯片的电源轨进入。MCU 的 GPIO 引脚可以用于使能电源序列,同时科被当做一个电源信号的回读信号。一般考虑到系统需求,Orin 芯片的进入设计可以运行在不同的电源状态下,不同的进入状态是由不同的进入条件来触发的。


MCU 的 PMIC 管理模块(TLF35584)可以提供 MCU 对应的电量,并且唤醒可用的 CAN 链路。SPI总线则可用于在 MCU PMIC 和 MCU 之间进行通信,从而实现对系统的唤醒、休眠、看门狗心跳的模式设置。


3、电源树设置


在 Orin Entry 设计后,即可通过 KL30 接入电源,MCU 可以控制 Orin 的电源。Orin Entry 设计也可以支持“深度睡眠”(由 SC7 进行电源状态管理,后面会做详细说明)。整个域控的唤醒要么由 CAN,要么由专门的连接器输入唤醒。


如下图表示了 Orin Entry 设计的电源树图。



为了详细的说明 Orin 电源子系统的电源树结构,这里可以将电源树结构区分为三大部分:蓄电池接入端 KL30、降压器、稳压器(TLF35584 或 LM5176)。


TLF35584 QVVS2 是一款多输出系统电源,适用于安全相关应用,通过高效灵活的前置/后置稳压器,在宽输入电压范围内提供 3.3V-μC、收发器和传感器。它具备宽开关频率范围允许在效率和小型滤波器组件的使用方面进行优化。专用参考稳压器独立于 μC 负载阶跃为 ADC 供电,并充当 2 个独立传感器电源的跟踪源。灵活的状态机、包括定时器在内的唤醒概念以及备用稳压器有利于在整个电源树设计中首先进行降压稳压处理。

本电源树设计模块配置为在 6V-36V 的输入电压范围内工作,并提供具有高达 12A 负 载电流的 12V 稳压输出。因此,可以通过 LM5176 供给 MCU 和 Can 收发器作为电压输入。通过使用稳压器 LM5176 可调节电流限制、使能、频率同步、电源正常、预偏置启动、同步 整流、UVLO 可调整。同时,LM5176 的宽输入电压降压-升压控制器可以输出灵活的高功率降压-升压设计。通过高效同步 DC-DC 降压转换器(如 TPS62065-Q1)可以提供固定的 5V 和 3.3V 输出给到 MCU、摄像头单元、超声波接口、冷却系统、芯片内部的工作电压 VDD。且MCU 的最高输出电流可以达到2A。此外,通过使用 LM5143 降压器,其中的高密度评估模块(EVM)可以实现高性能、双通道、汽车同步 DC/DC 降压控制器的性能。它可在 3.5V 至 36V 的宽输入电压范围内运行,这样整个有 Orin 配置的域控电源闭环就可以实现系统电源及子系统电源电压的输出了。这部分输出可以完全供给给域控内部的以太网交换机、加解串器、SOC、Can PHY 以及接入电路电压的控制。


4、电路保护 


如上图所示的反向电池保护模块可以用于保护可能流入设备的负向电压,这些设备都是 连接到电池输入端的。通常,反向电压保护是由二极管保护起来的。电源电压监控有三个 VRS-12设备,每个设备有6个监控输入,监控 Orin Soc 电源轨。


总结


本文从英伟达系列芯片本身启动时序以及利用该芯片构建的自动驾驶系统外设电源管理及启动模式进行分析,帮助读者了解整个芯片的启动原理及如何设计外围最小化系统架构。后续文章中将更加详细的就外围设计电路的启动路径及电源管理时序等进行详述。


分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 18浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 617浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦