【光电通信】光传送网OTN的速率解析

今日光电 2023-04-12 18:01
今日光电
       有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!



----与智者为伍 为创新赋能----


在 OTN 协议中,出现了各种各样的速率定义。隐含在这些速率定义的数值之下的,是 OTN 协议的潜在规律和及一些关键性的原理。


下面我们试图从这些速率定义出发,揭露 除 OTN 协议的部分原理,从而使得这些枯燥的数字变得鲜活起来,赋予其更深的含义;反过来,也使得我们更深刻地理解 OTN 的原理。


OTN/ODU/OPU 的速率


各个级别的 OTU 、ODU 和 OPU 速率如下所示:




下面将几个 G.709 中的表总在一起,我们来看一下其中的规律:G.709协议:超100G OTUCn信号及其帧结构。


规律 1 :  同一等级的 OTUk 、ODUk 和 OPUk payload 的速率之比为:

OTUkODUkOPUk = 255:239:238

显示,这与 OTU 的帧结构定义相关。OTU 的每一个帧大小为 4080 行 4 列的结构,其中最后 256 列为 FEC ,其它部分即 1~3824 列为 ODU 部分,因此 OTUk 和 ODUk 的比例为 255:239。1~14 列为 ODU 开销和 15 和 16 列为 OPU 开销,因此 ODU 和 OPU payload 部分相差 16 行, 故 ODUk 和 OPUk payload 部分的速率之比为 239:238 。这里需要注意的是,用于速率比较的 是 OPUk payload 部分,而不是 OPUk。


规律 2:OTU1/OUT2/OTU3 的基准速率分别为 STM-16/STM-64/STM-256 的速率,OTU4 的基 准速率为 10 倍 STM-64 。OTU2e 的基准速率为 10GE  (10.3125G) 速率。


其中,2,488,320kbit/s,9,953,280kbits/s,39,813,120kbit/s ,分别是 STM-16/STM-64/STM-256 的速 率,99,532,800kbits/s 为 10 倍 STM-64 的速率。通过这些基准速率乘以一个因子,即可得到 OTU1/2/3/4 的速率。可见 OTU1/OTU2/OTU3 设计之初,就是为了装载 SDH 而考虑的。OTU2e 的基准速率式 10.3125G ,是为了装载 10GE 信号而考虑的。


规律 3:238/237/236/227 因子规律:OTU1/2/3/4 与对应基准速率的比例并不相同,而是存 在 238/237/236/227 的因子关系,速率等级越高,将 STM 承载到同等级 OTN 时的填充越多。


STM-16 的速率和 OPU1 payload 速率完全相同,因此 CBR2G5 到 OPU1 的映射关系如下所示, 使用了 OPU1 的所有 3804 列数据区域。


STM-64 的速率只有 OPU2 payload 速率的 237/238,因此 CBR10G 到 OPU2 的映射关系如下所 示,仅使用了 OPU2 的 3788 列数据区域,其中 1905 到 1920 列为固定填充。

STM-256 的速率只有 OPU3 payload 速率的 236/238 ,因此 CBR10G 到 OPU3 的映射关系如下 所示,仅使用了 OPU3 的 3772 列数据区域,其中 1265 到 1980 列、2545 到 2560 列共 32 列 为固定填充。

OTU2e 的情况与 OTU2 类似,区别仅仅式载荷变成了 10GE 信号。将 10GE 映射到 OPU2e , 与 STM-64 映射到 OPU2 方法完全相同。CBR10G3 的速率为 OPU2e 的 237/238 ,映射时仅仅 使用了 OPU2e 的 3788 列数据区域,其中 1905 到 1920 列为固定填充:


规律 4:

  • 2 个 ODU0 的速率等于 1 个 OPU1 :STM-4/2 * 2 = STM-4;

  • 4 个 ODU1 的速率略小于 1 个 OPU2 :239/238 * STM-16 * 4 < 238/237 * STM-64;

  • 4 个 ODU2 的速率略小于 1 个 OPU3 :239/237 * STM-64 * 4 < 238/236 * STM-256;

  • 10 个ODU2 的速率略小于 1 个OPU4:239/237 * STM-64 * 10 < 238/227 * STM-64 * 10;

  • 10 个 ODU2e 的速率略小于 1 个 OPU4:239/237 * 10GE * 10 < 238/227 * STM-64 * 10;


这使得 1 个 OPU1 可承载 2 个 ODU0 ,1 个 OPU2 里可以承载 4 个 ODU1 ,1 个 OPU3 里可以 承载 4 个 ODU2 或 16 个 ODU1 ,1 个 OPU4 里可以承载 10 个 ODU2 或 10 个 ODU2e ,或 40 个 ODU1。OTN之G.709/G.872的解读-OTN的结构.


如下所示,为 OTU4 的映射路径,80 个 ODU0 ,40 个 ODU1 ,10 个 ODU2 或 ODU2e ,2 个 ODU3 都可以映射到 OPU4 中。


如下所示,为 OTU2 的映射路径,8 个 ODU0 ,4 个 ODU1 都可以映射到 OPU2 中。

如下所示,为 OTU3 的映射路径,32 个 ODU0,16 个 ODU1,或 4 个 ODU2 都可以映射到 OPU3 中。而对于 ODU2e  的情况,比较特殊。由于 OPU3  的速率小于 4 个 ODU2e  的速率,因此 OPU3 无法装载 4 个 ODU2e ,最多只能通过 ODTU3.9 支路,装载 3 个 ODU2e。


ODTU 的速率


当 OPU 中承载了低速率等级的 ODU 时,ODU 需要通过 ODTU(光数据支路单元)适配。ODTU 包含了开销了部分和 Payload 部分,以下是各种 ODTU 信号 payload 的带宽。


ODTU 有两种类型:

1)  ODTU01 、ODTU12 、ODTU13 、ODTU23 是一类 (ODTUjk),指将低等级的 ODUj 向高等级 的 OPUk 映射的支路单元,使用 AMP 映射;

2)  ODTU2.ts、ODTU3.ts、ODTU4.ts 是另外一类 (ODTUk.ts),指使用了 ts 个高速率等级 OPUk 的支路单元,使用 GMP 映射。


为了更清晰地说明 ODTU 的速率规律,我们先来看一下低速率等级的 ODU 向高速率等级 OPU 映射的过程。


  • 第一步:ODUj 可以通过 AMP 映射方式映射到 ODTUjk  中,或者通过 GMP 映射方式映射到 ODTUk.ts 中。

  • 第二步:HO  OPUk 会被分为很多的 1.25G/2.5G 的支路槽,通过字节同步映射 (简单的时分 复用方式),将 ODTUjk 或 ODTUk.ts 映射到这些 1.25G/2.5G 的支路槽中。


例如将 ODU2 映射到 OPU3 中,分为两步:

1)  先将 ODU2 映射到 ODTU23,

2)  ODTU23 的速率约为 10G ,需要占用 8 个 1.25G 的支路槽,因此需要将 ODTU23 映 射到 OPU3 的 8 个 1.25G 支路槽中。


再例如将 ODU2 映射到 OPU4 中,分为 2 步:

1)  先将 ODU2 映射到 ODTU4.8,

2)  ODTU4.8 的速率约为 10G ,需要占用 8 个 1.25G 的支路槽,因此需要将 ODTU4.8 映 射到 OPU4 的 8 个 1.25G 支路槽中。


需要注意的是,OPU2/OPU3/OPU4 的 1.25G 支路,虽然都称为 1.25G 支路,实际上它们的速 率不相同,OPU2 的 1.25G 支路最慢,约 1.249Gbps;OPU4 的 1.25G 支路最快,约 1.301Gbps。


规律 5 :ODTUjk 的 payload 带宽公式中,包括整数和尾数两个部分。

1) 整数部分:OPUk 中可以承载几个 ODTUjk ,那么整数部分就是 3808 除以几。

a) OPU1 中可以承载 2 个 ODTU01 ,整数部分 1904=3808/2

b) OPU2 中可以承载 4 个 ODTU12 ,整数部分 952=3808/4

c) OPU3 中可以承载 16 个 ODTU23 ,整数部分 238=3808/16

c) OPU3 中可以承载 4 个 ODTU13 ,整数部分 952=3808/4


2) 尾数部分:OPUk 中可以承载几个 ODTUjk,那么整数部分就是 1/4 除以几。

a) OPU1 中可以承载 2 个 ODTU01 ,小数部分 1/4/2 = 1/8

b) OPU2 中可以承载 4 个 ODTU12 ,小数部分 1/4/4 = 1/16

c) OPU3 中可以承载 16 个 ODTU13 ,小数部分 1/4/16=1/64

c) OPU3 中可以承载 4 个 ODTU23 ,小数部分 1/4/4 = 4/64


ODTU 到 OPU 的映射为时分复用的映射方式,OPU 被分为多个 1.25G/2.5G 的支路槽(tributaryslot, TS),ODTU 映射到这些支路槽中,映射方法为简单的时分复用方式。


OPU1 承载 2 个 ODTU01 时,每个 ODTU01 的载荷占用 1/2 的 OPU1 载荷,因此 ODTU01 的载 荷应该式 OPU1 载荷速率的一半,即 3808/2 /3808* OPU1 载荷速率 = 1904 / 3824 * ODU1 载 荷速率。


此外,我们还需要考虑到 OPU1 开销中的 NJO 调整机会。每个 OPU1 帧 (4 行) 只有 1 个字 节的 NJO 调整机会,因此对 2 个 ODTU01 ,每个 ODTU01 需要两个 OPU1 帧才能有 1 个字节 的 NJO 调整机会。考虑到这个调整机会后,ODTU01 还应加上 1/4/2 /3808* OPU1 载荷速率。这就是带宽计算中的小数部分。对于 OPU2/OPU3 都是类似的计算方法。


规律 6:ODTUk.ts 的 payload 速率和占用的支路槽数 ts 成正比,和 OPUk 中 1.25G 支路槽的 列数成正比。


ODTUk.ts 全部都使用 1.25G 支路槽,ts 表示占用的支路槽个数,因而其速率当然和 ts 成正 比,需要的 ts 支路数越多,ODTUk.ts 的速率就越高。在不同的 OPUk 中,1.25G 支路槽占的列数不相同。OPUk 的速度等级越高,1.25G 支路槽占 的列数越少。因此,以 ODUk 的速率为基准时,ODTUk.ts 的速率和 OPUk 中 1.25G 支路槽的 列数成正比。
  • 在 OPU2 中,有 8 个 1.25G 支路槽,因此列数为 3808/8 = 476;

  • 在 OPU3 中,有 32 个 1.25G 支路槽,因此列数为 3808/32= 119;

  • 在 OPU4 中,有 80 个 1.25G 支路槽,因此列数为 3800/80 = 47.5 (其中最右边 8 列为填充);


ODTUk.ts 不使用 NJO 调整机会,因此其速率与 NJO 无关,也没有 ODTUjk 那样的小数部分。


如何解决速率差


当数据映射到 OPU 中 (包括客户侧信号直接映射到 OPU,和低速率等级的 ODU 映射到 高速率等级的 OPU 等情况),数据速率和 OPU 载荷速率存在一定的差异。


这种差异可能是 由于数据速率和 OPU 速率本身就不匹配,也可能是产生数据的时钟和 OPU 的时钟不一致引 起的。速率差异问题可以采用合理的映射方式来解决,OTN  协议规定了 AMP 、BMP 、GMP 和 GFP-F 等映射方式。
  • AMP:Asynchronous Mapping Procedure  异步映射规程;

  • BMP:Bit-synchronous Mapping Procedure  比特同步映射规程;

  • GMP:Generic Mapping Procedure  通用映射规程;

  • GFP-F:Frame mapped Generic Framing Procedure  通用成帧规程。

BMP、AMP 和 GMP 三种映射方式的使用区别如上表所示。
  • BMP 必须 Server 时钟和 Client 时 钟完全同源;

  • AMP 映射必须 Client 信号时钟频率和 OPUk 的负载时钟频率误差在 65 个 ppm 以内

  • GMP 必须 Client 信号速率不大于 OPUk 的负载速率。


信号映射到 OPU 中有两种方式,一种是直接映射到 OPU 中,另一种是已经映射到 ODU,再 次映射到更高速率等级的 OPU 中。以下式 ODUj 到 OPUk 的映射类型。


规律 7 :PT=20 的映射为 1.25G 支路映射 (除了 ODU0->OPU1 以外);PT=21 的映射为 2.5G 支路映射,PT=22 的映射为 5G 支路映射。
  • ODU0 的映射:

ODU0 -> ODTU01 (AMP) -> OPU1 (PT=20)

ODU0 -> ODTU2.1 (GMP) -> OPU2 (PT=21)

ODU0 -> ODTU3.1 (GMP) -> OPU3 (PT=21)

ODU0 -> ODTU4.1 (GMP) -> OPU4 (PT=21)


  • ODU1 的映射:

ODU1 -> ODTU12 (AMP)-> OPU2 (PT=20, PT=21)

ODU1 -> ODTU13 (AMP) -> OPU3 (PT=20, PT=21)

ODU1 -> ODTU4.2 (GMP) -> OPU4 (PT=21)


  • ODU2 的映射:

ODU2-> ODTU23 (AMP) -> OPU3 (PT = 20, PT=21)

ODU2-> ODTU4.8(GMP) -> OPU4 (PT=21)


  • ODU2e 的映射:

ODU2-> ODTU3.9 (GMP) -> OPU3 (PT=21)

ODU2-> ODTU4.8(GMP) -> OPU4 (PT=21)


  • ODU3 的映射:

ODU3-> ODTU4.31 (GMP) -> OPU4 (PT=21)


我们再把 SDH 和 ETH 客户侧信号直接映射到 OPU 的情况列举如下:


STM-16 -> OPU2 (AMP PT=02, BMP PT=03)

STM-64 -> OPU3 (AMP PT=02, BMP PT=03)

STM-256 -> OPU4(AMP PT = 02, BMP PT=03)


1000 BASE-X -> OPU0 (GMP PT=07)

10G BASE-R -> OPU2e (BMP, PT=07?)

40G BASE-R -> OPU3 (GMP PT = 07)

100G BASE-R-> OPU4 (GMP PT = 07)


规律 8:各种客户信号的映射方式如下:
  • ODTU01, ODTU12, ODTU13, ODTU23 使用 AMP 映射;

  •  ODTUk.ts 使用 GMP 映射;

  •  SDH 到对应的 OTU 使AMP 或 BMP 映射;

  • 以太信号使用 GMP 映射 (OTU2e 除外);

  • 10GE 到 OTU2e 使用 BMP 映射。


需要注意的是 10GE 到OTU2e 只能使用BMP 映射,这是由于 10GE 信号的频率偏差为100ppm, AMP 无法支持这么大的时钟 jitter ,因此只能使用 BMP 映射。


1. BMP 无速率差异

BMP 映射仅仅应用在 Client 信号和 Server 信号速率成比例关系的情况下,即两者之间 没有速率差异。Client 信号的时钟进行一个分数倍频以,后即可作为 Server 信号的时钟;Server 信号的恢复之中进行分数分频以后,即可作为 Client 信号的时钟。


10BASE-R 到 OPU2e 的映射使用 BMP 。STM 信号到相应的 OPUk ,可以使用 BMP 映射, 也可以使用 AMP 映射。


2.AMP 解决速率差异

AMP 信号解决 Client 信号和 Server 信号速率差异在较小的范围之内的差异。有两种情 况:


1) Client 信号和 Server 信号使用成比例关系的频率:

但是由于两者各自使用自己的本 地时钟,那么时钟本身的误差会导致速率造有差异。例如 STM-16  装载到 OPU2  中,OPU2 以本地时钟发送,那么发送的本地时钟和 STM-16 时钟之间的差异,造成了速率比例关系的 误差。这需要通过 AMP 映射的指针调整方法解决。

AMP 映射可以解决+/-65ppm 的误差,输入信号+/-45ppm ,OPU 时钟+/-20ppm 。那么这 个 65ppm 的值是怎么来的呢?其实很简单:OPUk 的载荷区域为 3080*4 个字节,每个 OPUk 帧,都存在 1 个字节的正调整机会 PJO 和 1 个字节负调整机会 NJO 。因此可以接受的最大速率差异即:

+/-1 ÷ (3080*4) = +/-65.7ppm。


2) ODTUjk 的AMP 映射:

当 ODUj 通过 ODTUjk 映射到 OPUk 的 1.25G 或 2.5G 支路,ODTUjk 具备支路开销自己 TSOH ,用于适配 ODUj 和 ODTUjk 之间的速率差。ODTUjk 包含 1 个字节 的负调整机会 NJO 和2 个字节的正调整机会 PJO1、PJO2。通过 JC 判断调整机会的方法如下:

由于每个支路都需要使用 OPUk 的开销字节,因此每个支路槽的 JC 、NJO 等是时分复用的,既每个支路槽用相应复帧指示 MFAS 所表示的那一帧的 OPUk 开销。那么 PJO 也一样, 每个支路的两个字节的 PJO 开销,也使用相应 MFAS 值所指示的第一列和第二列的字节。如下图所示:

那么,ODTUjk 的 AMP 映射的速率差异接受范围是 (-65ppm ,+130ppm)。计算速率差异如 下:

以下是 ODU1 映射到 ODTU13 时的固定填充情况,共 238 列,地 119 列设置为固定填充。

当 ODUjk 装载时,速率差的范围为 0~35.5ppm,输入数据的时钟差为+/-20ppm,输出数 据的时钟差也为+/-20ppm ,那么装载时的速率差为 -40ppm ~ 75.5ppm 。这样一个字节的调 整机会+/-65ppm 显然无法满足要求。因此 ODUjk 需要使用 2 个字节的正调整机会,使得可接受的速率差达到 -65ppm ~ 130ppm。


3. GMP 映射解决更大的速率差


GMP映射可以解决更大的速率差,要求客户侧信号必须小于 OPUk  的负载速率。GMP 不使用 NJO 字节。GMP 使用 Sigma-Delta 算法,间歇性地标记 OPUk 负载中的某些数据为固 定填充,不能填充客户侧型号,从而使得客户侧信号使用 OPUk 的负载速率。


OTUk.ts 承载方式,都使用 GMP 映射方式。同时1000BASE-X 、40GBASE-R 、100GBASE-R ,都是使用 GMP 方式,分别映射到 OPU0 、OPU3 和 OPU4。

总 结


文章总结了OTN 协议中的各种速率定义的规律,阐述了在这些速率定义后隐含的原理。包括 OTN/ODU/OPU 的速率、ODTU的速率,以及解决这些速率差的指针调整规律。成文仓促,若有错误或者不足之处,往不吝指正。


源:通信百科



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566


评论 (0)
  • 随着自动驾驶技术的快速发展,仿真软件在开发过程中扮演着越来越重要的角色。仿真传感器与环境不仅能够加速算法验证,还能在安全可控的条件下进行复杂场景的重复测试。本文将分享如何利用自动驾驶仿真软件配置仿真传感器与搭建仿真环境,并对脚本进行修改,优化和验证4个鱼眼相机生成AVM(Around View Monitor)合成数据的流程。通过这一过程,一同深入体验仿真软件的应用潜力!一、流程概述AVM是一种通过多相机实现车辆周围环境的实时监控和显示的系统,广泛应用于自动驾驶和高级驾驶辅助系统(ADAS)的环
    康谋 2025-03-20 09:57 34浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 45浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 74浏览
  • 在人工智能与物联网技术深度融合的今天,离线语音识别技术凭借其隐私安全、即时响应等优势,正在智能家居、工业控制等领域快速普及。广州唯创电子推出的WTK6900系列语音识别芯片,凭借其创新的离线命令词自学习功能,为用户提供了灵活高效的语音交互解决方案。本文将深入解析这一核心技术的工作原理及操作流程。一、智能自学习功能概述WTK6900系列芯片支持多模态学习方式,用户可通过物理按键、串口指令、语音命令或专用APP启动学习流程。其核心技术突破在于:全离线运行:所有学习过程均在本地完成,无需网络传输动态模
    广州唯创电子 2025-03-20 08:54 130浏览
  • 在电子制造领域,PCB(印刷电路板)的使用寿命直接决定了产品的长期稳定性和可靠性。捷多邦作为全球领先的PCB制造商,始终将质量放在首位,致力于为客户提供高可靠性、高性能的PCB解决方案。以下是捷多邦如何确保PCB使用寿命超过20年的核心技术与优势。 1. ​高品质原材料:从源头保障耐用性捷多邦采用国际认证的优质基材,如FR4、高频材料和高TG板材,确保PCB在高温、高湿等极端环境下的稳定性。通过严格的原材料筛选和入库检验,捷多邦从源头控制质量,避免因材料缺陷导致的失效问题。 
    捷多邦 2025-03-20 11:22 90浏览
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 64浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 62浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 77浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 58浏览
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 67浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 55浏览
  • 故障现象 一辆2024款路虎发现运动版车,搭载2.0 L发动机,累计行驶里程约为5 000 km。车主反映,使用遥控器无法解锁车门,随后使用机械钥匙打开车门,踩下制动踏板,按压起动按钮,仪表盘提示“将智能钥匙放在图示位置,然后按下起动按钮”(图1)。 图1 故障车的仪表盘提示采用上述应急起动方法,发动机能够起动着机。上述故障现象已出现过多次,过一段时间又会恢复正常,这次故障出现要求将车辆拖入店内进行彻底检修。 故障诊断 车辆进店后进行试车,车辆一切功能又恢复正常。经过反复测试
    虹科Pico汽车示波器 2025-03-20 10:17 46浏览
  • 4月8-11日,第91届中国国际医疗器械博览会(CMEF)将在国家会展中心(上海)举办。这场全球瞩目的医疗科技盛宴以“创新科技,智领未来”为主题,旨在全方位展示医疗科技的最新成果,与来自全球的行业同仁一道,为全球医疗健康领域带来一场科技与商贸交融的产业“盛宴”。飞凌嵌入式作为专业的嵌入式技术解决方案提供商,一直致力于为医疗器械行业提供丰富的、高可靠性的嵌入式硬件主控解决方案。届时,飞凌嵌入式将为来自全球的观众带来适用于IVD、医疗影像、生命体征监测等医疗设备的嵌入式板卡、显控一体屏产品以及多款动
    飞凌嵌入式 2025-03-20 11:46 31浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 42浏览
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 48浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦