循环队列C语言面向对象实现

李肖遥 2023-04-03 22:10
    关注、星标公众号,直达精彩内容

来源:https://blog.csdn.net/lin_strong/article/details/88236566



前言

学习完《Test-Driven Development for Embedded C》后对C语言中的面向对象开发又多了一层理解,过两天可能专门出个博客来说说新的理解。

而我已经按照更面向对象的方法大改了原来的那个环形缓冲区模块,考虑到整个结构已经完全不同了,所以直接弃用了原来那个模块,新模块直接重新开始记版本号。

Buffer模块为了通用,定义了前后都可以进出,想当成队列来用比如可以入队用BackIn,出队用FrontOut;相当成栈来用比如可以入栈用BackIn,出栈用BackOut。当然,第三篇中我会给出Queue类,并把Buffer类适配为了Queue类,这样可能用起来更舒服些,虽然当然有额外的开销。

缓冲区介绍

实际项目中我们常常会需要一小块区域来暂存一些数据,可能是用来缓存使用,可能是用来线程间通信,我们把其称为缓冲区/Buffer。这块区域可能是先入先出的(队列)也可能是先入后出的(栈),但反正最后都可以抽象为一个可以在头或尾存取数据的内存区域。

缓冲区的具体实现方式一般有链表和数组,当不能确定需要的缓冲区大小时使用链表较好,能确定时使用数组可以节省很多动态分配内存的开销。

而在具体实现上我们常常会使用环形缓冲区,环形缓冲区就是一个逻辑上环形的区域,因为其(逻辑上)是环形的,所以不需要在内部元素变动的时候需要移动内部剩下的元素。这样就使元素进出头尾的时间复杂度只有O(1),效率十分的高,在通信等领域应用频繁。

模块类图

以下是目前整个模块的类图。

模块设计思路简介

缓冲区是个很常见的需求,即对一块逻辑上环形的区域的头尾进行In和Out操作,以缓存各种类型的数据。对调用者来说,并不需要知道其使用的模块/类内部实际是怎么实现的,只需要知道这个模块/类实现哪几个方法,这几个方法是干什么用的就行(其实就是所谓的面向接口编程)。因此,需要为环形缓冲区定义通用的接口。

在一个略大的项目中我们常常需要在多处使用环形缓冲区。所以在这次的实现中我并没有使用单例的方式来实现这个模块,而是直接默认是多例的方式,不同的实现各自提供Create方法来返回对象引用,Destroy方法来销毁。

实际开发中有时会需要混用多种实现,比如有的你希望使用一个RAM数组,有的想用链表,甚至有的是使用Flash来存储的等。而只要接口相同,调用者不需要知道具体的实现细节,只需要你给他传递一个实现了这个接口的对象就行。这其实就实现了不同模块间的解耦。而为了实现在同一个C工程中调用同一个接口能实际调用不同的实现(即多态),这就需要使用虚表技术。这里就不展开了。

再考虑一个很实际的需求,在CodeWarrior对S12X的编程中,为了节省非分页的RAM,我常想要把这个环形缓冲区放在分页的RAM中,这样,两种环形缓冲区可能唯一的差别就是具体访问某个元素的方式是使用普通指针还是rptr指针,如果分别写一个实现,就会有大量的冗余代码。出于程序员的自我修养,肯定得把这些通用的部分给抽象出来。用继承的方式实现代码的复用。

好像前面说的有点混乱。简而言之,就是按照面向对象的思想,定义不同层次的接口,通过虚表实现多态,通过类继承尽可能复用代码,最终实现这个完整的模块

我们可以照着类图看看目前我的抽象方式。首先所有对象都会有个Destroy方法,所以object接口对其进行了定义。这里我没有专门再定义一个Object虚类,后面可能会抽象出来。而最主要的一个基类叫做Container(容器),所有的容器都要实现getCapacity和getCount接口。而isEmpty和isFull其实是通过调用这两个虚方法返回结果的。

而后虚类BufferTYPE继承了Container虚类,并(虚)实现了环形缓冲区的7个通用方法,包括检查头/尾元素(Front和Back)、从头/尾取出元素(FrontOut和BackOut)、往头/尾放入元素(FrontOut和BackOut)以及清空缓冲区(Cleanup)。

TYPE只是一个代号,使用时要替换成实际类型。目前我实现了UINT8、UINT16、UINT32的。如果需要使用其他类型,如果类型的size为8、16、32,建议直接适配一下就好(其实就是对同样size的进行强制类型转换一下,BufferChar给出了一个示例),这样可以尽可能地实现代码复用,如果是其他特殊的,那就照着源代码中的自己扩展一下吧,主要是C语言没有模板功能,只好直接在名字中标记上类型来区分。

然后继承的BufferTYPEIndexed虚类要实现索引器接口,其是所有能通过索引直接访问的Buffer的基类。

BufferArrayShare类继承BufferTYPEIndexed类并实现了所有通过类数组操作来实现的Buffer类的通用部分,其调用索引器来访问数组元素,这样就实现了不同访问方式的复用。与之相对的则是子类BufferTypeArray和BufferTypeArrayR分别实现了位于直接访问区的数组和分页区数组的索引器。

而末尾的3个实现类则主要负责内存的管理部分,动态分配实例并实现对应的Destroy方法,然后调用父类的Init方法来实现完整的类。项目中可以同时使用这几个类。

当然,因为高度的面向对象,导致有大量的小文件,这其实和面向对象语言提供的各种类有一堆文件一个道理。好在使用起来还是很方便的。

如果只是使用的话建议不需要具体了解内部的实现,根据类图了解下继承关系,看看每个类的接口的描述。然后直接调用实例的方法就行。那一堆小文件就直接全部拖到项目中就好。(PS.没有用到的类是不会链接进去占用内存的,所以直接扔进项目就好了,没用到就没用到。)

现在会有这些文件。


编程约定

接口定义在.h头文件中,如名字中带有Private则代表其中的接口为private或protect的,非开发者不应该使用,否则为public的,供给用户使用。

由于C语言本身没有OO这个概念,所以类的方法以这种方式命名,这样可以很直观地知道是哪个类的方法:

类名_方法();

另,对于多例的类,第一个参数为被调用方法的实例,其后跟其他参数。

如BufferUINT8的Back方法的签名如下:

uint8_t BufferUINT8_Back    (BufferUINT8 buf);
1

子类实例可以直接调用父类方法。如:

uint8_t arr[ARRSIZE];
BufferUINT8ArrayR buf;
buf = BufferUINT8ExternalArray_Create(arr, ARRSIZE);
// 缓冲区前面放入55
BufferUINT8_FrontIn((BufferUINT8)buf,55);
// 现在缓冲区内元素为[ 55 ]

示例程序

这里已隐去不重要的代码:

#include 
#include "BufferExternalArrayR.h"
#include "BufferExternalArray.h"
#include "BufferMallocArray.h"

#pragma push
#pragma DATA_SEG __RPAGE_SEG PAGED_RAM
static uint8_t PagedArray[300];
#pragma pop
static uint8_t nonPagedArray[50];

static void BufferTest(BufferUINT8 buf){
 int i;
 printf("sizeof buffer:%u\nFrontIn: 0 to 9\nBackOut: ",BufferUINT8_getCapacity(buf));
 for(i = 0; i < 10; i++)
   BufferUINT8_FrontIn(buf,i);
 for(i = 0; i < 10; i++)
   printf(" %u",BufferUINT8_BackOut(buf));
 printf("\n");
}
void main(void) {
 BufferUINT8 buf1,buf2,buf3;
 buf1 = BufferUINT8ExternalArrayR_Create(PagedArray,sizeof(PagedArray));
 buf2 = BufferUINT8ExternalArray_Create(nonPagedArray,sizeof(nonPagedArray));
 buf3 = BufferUINT8MallocArray_Create(40);
 printf("buf1(BufferExternalArrayR) Test:\n");
 BufferTest(buf1);
 printf("buf2(BufferExternalArray) Test:\n");
 BufferTest(buf2);
 printf("buf3(BufferMallocArray) Test:\n");
 BufferTest(buf3);
 for(;;) {
}
}

可以看到,上例中BufferTest并不知道传递给他的BufferUINT8的具体实现,它只需要知道这个实例实现了BufferUINT8的方法就可以正确地对其进行操作,从而实现了解耦。

另,上例中的BufferUINT8_getCapacity其实是因为我在Buffer模块的头文件中用宏的方式给Container_getCapacity起了别名,这样用起来就更顺手了对吧。

版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 44浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 34浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 39浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 93浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 208浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 156浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 92浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 117浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 191浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 77浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 106浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 134浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦