全波整流电路是将交流电的完整周期转换为脉动直流电的整流电路。与仅利用输入交流周期的半波的半波整流电路不一样,全波整流电路利用全周期,全波整流可以克服半波整流电路效率较低的问题。
全波整流电路可以用以下两种方式构建:
使用一个中心抽头变压器和两个二极管,这被称为中心抽头全波整流电路。
使用一个标准变压器,四个二极管排列成一个电桥,这个叫做桥式整流电路。
这篇文章只讲第一种方法。
中心抽头全波整流电路包括:中心抽头变压器,两个二极管、阻性负载组成。
中心抽头变压器:就是一个稍稍修改了普通的变压器,它有一根额外的导线连接到次级绕组的确切中心。这种结构将交流电压分成两个相等且相反的电压,即+Ve电压(V a)和-Ve电压(V b)。总输出电压为:
中心抽头全波整流电路图如下所示。
向输入变压器施加交流电压,在交流电压的正半周期内,端子1为正,中心抽头为0电位,端子2为负电位。
这将导致二极管 D 1中的正向偏置并导致电流流过它。在此期间,二极管D2处于反向偏置状态,将阻止电流通过它。
在输入交流电压的负半周期期间,端子2将相对于端子 2 和中心抽头变为正。这将导致二极管 D 2中的正向偏置并导致电流流过它。在此期间,二极管 D 1处于反向偏置状态,将阻止电流通过它。
在正周期期间,二极管D 1导通,在负周期期间,二极管D 2在正周期期间导通。
结果,两个半周期都允许通过。这里的平均输出直流电压几乎是半波整流器直流输出电压的两倍。
作为中心抽头全波整流器的输出,可以得到一个带有许多纹波的脉动直流电压。但是不能将这种脉动用于实际应用。
因此,为了将脉动直流电压转换为纯直流电压,使用如上所示的滤波电路。在这里,在负载上放置一个电容。
电容滤波电路的工作是使纹波短路并阻挡直流分量,使其流过另一条路径并在负载上可用。
在正半波期间,二极管D1开始导通,电容未充电。
当施加恰好大于电容器电压的输入交流电压时,它会立即将电容充电至输入电压的最大值。此时,电源电压等于电容电压。
当施加的交流电压开始下降并小于电容器时,电容开始缓慢放电,但与电容的充电相比,这速度较慢,并且没有足够的时间完全放电,又开始充电。
因此,电容中大约有一半的电荷被放电。在负循环期间,二极管D2开始导通,上述过程再次发生。这将导致电流以相同的方向流过负载。
现在将根据前面的理论和上图推导出全波整流电路的各种公式。
“纹波”是将交流电压波形转换为直流波形时剩余的不需要的交流分量。
尽管尽最大努力去除所有交流分量,但在输出侧仍有少量残留物会产生直流波形的脉动。这种不受欢迎的交流分量称为“纹波”。
为了量化半波整流器将交流电压转换为直流电压的能力,我们使用所谓的纹波系数(由 γ 或 r 表示)。
纹波系数是整流器交流电压(输入侧)与直流电压(输出侧)的RMS值之比。
纹波系数的公式为:
其中,V rms是交流分量的RMS值,V dc是整流器中的直流分量。
中心抽头全波整流器的纹波系数等于 0.48(即 γ = 0.48)。
注意:要构建一个好的整流电路,需要将纹波因子保持在尽可能小。我们可以使用电容或电感来减少电路中的纹波。
整流电路效率 (η) 是输出直流功率与输入交流功率之比。效率的公式等于:
中心抽头全波整流电路的效率等于 81.2%(即 η max = 81.2%)。
形状因数是RMS 值与平均值之间的比率。
形状因数的公式如下:
中心抽头全波整流的形状因数等于 1.11(即 FF = 1.11)。
以下公式给出了直流输出电压的平均值:
电压的平均值:
可以使用以下公式计算电流的 RMS 值:
以下公式给出了全波整流电路的峰值因数:
全波整流电路的整流效率可由下式求得:
全波整流电路的效率为81.2%。
全波整流电路的优点包括:
👇点击关注,技术干货准时送达!👇
#推荐阅读#
硬件设计基础60问
一位老电子工程师的十年职场感悟
开关电源设计资料大全(建议收藏)
大牛多年研发电源问题汇总(受益匪浅)
你若喜欢,点个“赞”和“在看”