来自下方的电源,埋入式互连装置将帮助拯救摩尔定律

FPGA技术江湖 2023-04-02 08:44

埋入式互连装置将帮助拯救摩尔定律。

一段时间以来,每种新处理器产生的废热都比原先的要多。如果芯片还是按2000年代早期的轨迹发展,它们的热功率很快将达到每平方厘米6400瓦,相当于太阳表面的功率通量。

但事情没有变得那么糟糕,工程师们在努力控制芯片功耗。在性能方面,数据中心的片上系统(SoC)设计一直仅次于超级计算机处理器,它们的功耗通常为200至400瓦/平方厘米。智能手机芯片的典型功耗为5瓦左右。

不过,虽然计算机芯片不会真的把口袋烧一个洞(尽管它们产生的热量的确足以煎鸡蛋),但要运行日常的应用程序,它们仍然需要大量的电流。以数据中心的片上系统为例:平均来说,它内部的晶体管功耗大约为200瓦,在约1到2伏的电压环境下,这意味着芯片需要从稳压电源中汲取100到200安的电流。冰箱的电流一般仅为6安。高端手机的功耗是数据中心片上系统的1/10,但即便如此,电流仍然达到了10至20安。也就是说,你的口袋里可能装着3台冰箱!

将电流传送至数十亿个晶体管正迅速成为高性能片上系统设计的主要瓶颈之一。随着晶体管不断变小,为其提供电流的互连装置必须封装得越来越紧密,做得越来越小巧,但这会增加电阻和衰减电源。这条路已走不下去:如果不对芯片器件的电子进出方式进行大的改变,无论我们制造多小的晶体管都无济于事。

幸运的是,我们有一个很有希望的解决方案:可以使用长期被忽视的硅的另一面。

从产生电子的电源到用电子进行计算的晶体管,电子要走很长的一段路。在大多数电子设备中,电子沿着印刷电路板的铜线到达片上系统的封装,经过连接芯片与封装的焊锡球进入芯片,然后通过芯片上的互连装置连接到内部晶体管。最后这一步才是真正最重要的。

想知道为什么,最好先了解芯片的制造过程。片上系统从一块高质量的晶体硅开始。我们首先在这块硅的最上面做一层晶体管。接下来,用金属的互连装置将晶体管连接起来,形成有计算功能的电路。这些互连装置是一层一层叠起来的,被称为堆栈,要为当今芯片上的数十亿个晶体管提供电源和数据传输,堆栈需要达到10到20层。
为了连接微小的晶体管,最靠近硅晶体管的那几层又薄又小,但随着堆栈高度的上升,它们的尺寸会变大。这些互连装置层越宽,电阻越小,越有利于电源供电。
然后,可以看到,为电路——电源配送网络(PDN)——供电的金属位于晶体管的顶部。我们称之为正面电源。我们还看到,电源配送网络会不可避免地与信号传输网络争夺空间,因为它们共享同一组铜资源。
为了使片上系统获取电源和传输信号,我们通常将最上面(离晶体管最远)的金属层连接到芯片封装的焊锡球(也称为“凸点”)。因此,电子要到达任意一个晶体管做有用功,必需穿过10到20层越来越窄且弯弯曲曲的金属层,直至最终到达最后一层的本地连接。
这种电源配送方式肯定是有损耗的。在这条路径的每一阶段,有些电能损失了,还有一些用于控制配送本身。对于今天的片上系统,设计者通常有一个损耗预算,允许封装和晶体管之间的电压降低10%。因此,如果电源配送网络的总效率达到90%及以上,那么我们的设计就是正确的。
从历史上看,这种效率可以通过良好的工程设计实现,有些人甚至可能说,与我们今天面临的挑战相比,这很容易解决。对于今天的电子设备,片上系统设计者不仅要管理不断增加的功率密度,而且要管理每一代的功率损失都在急剧增加的互连装置。
不断增加的损耗与制造纳米级导线的工艺有关。这一工艺及其使用的材料可以追溯到1997年左右,当时IBM开始用铜代替铝制造互连装置,整个行业也随之转变。在那之前,铝线一直是良好的导体,但随着摩尔定律曲线向前发展,它们的电阻很快变得太高、不可靠。在现代集成电路规模下,铜的导电性更好。但一旦互连装置的宽度缩小到100纳米以下,铜的电阻也开始出现问题。如今,已制成的最小互连装置约为20纳米,电阻已成为一个亟待解决的问题。
为了描绘互连装置中的电子,可将它比喻成台球桌上的一副台球。现在想象一下把它们从桌子的一端推到另一端。少数几个球会在途中发生相互碰撞和反弹,但大多数会沿着直线行进。现在再设想一下把球桌缩小一半,那么你会看到更多的碰撞,球的移动也会变慢。接下来,再次缩小球桌,并将台球的数量增加10倍,这就是芯片制造商现在面临的情况。真正的电子不一定会发生碰撞,但它们相互距离足够近时,产生的分散的力会干扰其在导线中的流动。在纳米尺寸下,这会导致导线中的电阻大大增加,引发严重的电源损耗。
电阻增大不是一个新挑战,但现在每个后续工艺节点的电阻增大幅度却是前所未有的。此外,管理这种增长的传统方法已不再适用,因为纳米级的制造规则强加了许多限制。为了防止电阻增加,可以任意增加某段导线宽度的日子已经过去了。现在,设计者必须严格遵守导线宽度的特定规范,否则芯片可能无法制造。因此,行业面临双重问题,即互连装置的电阻升高以及在芯片空间的缩小。

还有一种方法:可以利用晶体管下面的“空”硅。在作者贝恩(Beyne)和佐格拉福斯(Zografos)工作的微电子研究中心(Imec),我们率先提出了一种“埋入式电源轨”(BPR)制造概念。这项技术不是在晶体管上面而是下面建立电源连接,目的是建造更丰满、电阻更小的电源轨道,并为晶体管层上面的信号传输互连装置腾出空间。

要制作BPR,我们首先需要在晶体管下面挖出深槽,然后用金属填充,而且要在制造晶体管之前做这件事。金属的选择也很重要。这种金属需要承受制造高质量晶体管工艺步骤的温度,可达1000℃左右。在这个温度下,铜会熔化,进而污染整块芯片。因此,我们选用熔点更高的钌和钨进行试验。
因为晶体管下方有许多未使用的空间,我们可以把BPR沟槽做得又宽又深,非常适合电源配送。与位于晶体管顶部的金属薄层相比,BPR的电阻是前者的1/20到1/30。这意味着BPR能有效地向晶体管配送更多的电源。
此外,将电源轨从晶体管顶部移开,可为信号传输互连装置腾出空间。这些互连装置形成了基本的电路“单元”——最小的电路单位,如SRAM内存位单元或者用来构成复杂电路的简单逻辑单元。利用释放出来的空间,我们可以将这些单元缩小16%或更多,最终转化为每块芯片上更多的晶体管。即使特征尺寸保持不变,我们仍然可将摩尔定律推进一步。

遗憾的是,仅埋设局部的电源轨是不够的。我们仍然需要将电源从芯片顶部向下传输到这些电源轨,这会降低效率和损失部分电压。

英国ARM公司的研究人员,包括作者克莱恩(Cline)和普拉萨德(Prasad),在他们的一个CPU上进行了模拟,发现BPR构建的电源网络比普通正面电源网络效率高40%。但他们也发现,即使使用正面输电的BPR,传输到晶体管的总电压也不足以维持CPU的高性能运行。
幸好,Imec同步制定了一个可进一步改进电源配送的补充方案:将整个电源配送网络从芯片的正面移到背面。这种解决方案被称为“背面电源输送”,或者笼统地说是“背面金属化”。它将晶体管下方的硅减薄至500纳米以下,以打出纳米尺寸的“硅通孔”(TSV)。这些纳米硅通孔是垂直互连装置,可以通过硅的背面连接到埋入式电源轨的底部,就像数百个小型矿井一样。在晶体管和BPR下方创建纳米TSV后,就可以在芯片背面放置更多的金属层,形成完整的电源配送网络。
我们在Arm对之前的模拟进行扩展时发现,只需两层厚的背面金属就足以完成这项工作。只要能将纳米TSV的间距小于2微米,我们就可以设计一种背面电源配送网络,其效率是带有埋入式电源轨的正面电源配送网络的4倍,是传统正面电源配送网络的7倍。
背面电源配送网络的额外优势是与信号网络物理分离,这两个网络不再争夺同一金属层资源。每个网络都有更多的空间。这也意味着,金属层特性不再需要在电源路由的偏好(又厚又宽,以获得低电阻)和信号线路的路由(又薄又窄,可连接密集的晶体管)之间寻求折衷。我们可以同时为电源路由调整背面金属层,为信号路由调整正面金属层,两全其美。
在Arm的设计中,我们发现无论是传统的正面电源配送网络,还是带有埋入式电源轨的正面电源配送网络,我们都需要牺牲设计性能。但用背面电源配送网络,CPU就能够实现高频,并实现高效的电源配送。
当然,你可能想知道这个方案如何将信号和电源从封装传输到芯片。在这里,纳米TSV也是关键。可以用它们将所有输入和输出信号从芯片的正面传输到背面。这样,电源和I/O信号都可以连接到放置在背面的焊锡球上。

仿真研究是一个很好的开端,它们展示了采用BPR背面电源配送网络的CPU设计水平潜力。但将这些技术应用于大批量制造还有很长的路要走。还有重大的材料和制造挑战需要解决。选择最佳的BPR和纳米TSV金属材料对可制造性和电效率至关重要。此外,制造BPR和纳米TSV都需要的高深宽比(深而窄)沟槽非常难。在硅衬底上可靠地蚀刻间距紧密、深而窄的沟槽,并用金属填充,对于芯片制造业来说是一种相对较新的方法,也是业界需要认真解决的问题。对于开启纳米TSV的广泛应用,开发可靠且可重复的制造工具和方法是必不可少的。

另外,采用电池供电的片上系统,如手机和其他功率受限的设计,已经拥有比我们目前讨论的更为复杂的电源配送网络。现代电源配送将芯片分成了多个电源域,可以在不同的电压下工作,甚至为了省电可以完全关闭(参见可延长电池寿命的电路)。
因此,背面电源配送网络和BPR最终必须做更多工作,而不仅仅是有效传输电子。它们要精确地控制电子的去向和到达目的地的电子数量。芯片设计师在芯片级电源设计方面,不希望倒退好几步。因此,我们必须同时优化设计和制造,以确保BPR和背面电源配送网络优于今天的节能集成电路技术,或者至少与之相当。
未来的计算取决于这些新的制造技术。无论你担忧数据中心的冷却费用还是智能手机每天的充电次数,耗电量都至关重要。随着我们不断缩小晶体管和集成电路的尺寸,电源配送成为一项重要的芯片挑战。如果工程师能够克服随之而来的复杂性,BPR和背面电源配送网络可能会很好地应对这一挑战。
作者:Brian Cline、Divya Prasad、Eric Beyne、Odysseas Zografos

END


往期精选 

 
 

【免费】FPGA工程师招聘平台

简谈FPGA设计中系统运行频率计算方法与组合逻辑的层级

SANXIN-B01开发板verilog教程V3电子版

求职面试 | FPGA或IC面试题最新汇总篇

FPGA项目开发:204B实战应用-LMK04821代码详解(二)

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2023.01.02更新)

FPGA就业班,2023.04.15开班,系统性学习FPGA,高薪就业,线上线下同步!


FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+公司/学校+岗位/专业进群


FPGA技术江湖QQ交流群

备注姓名+公司/学校+岗位/专业进群


FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦