如何使用电容来降低开关电源噪声

电子芯期天 2023-04-01 07:30

开关电源输入用共模滤波器中包括电容器、电感、铁氧体磁珠和电阻等部件。接下来将对其中使用电容和电感降噪的对策进行介绍,这也可以称为“噪声对策的基础”。在这里使用简单的四元件模型。如果要进一步表达高频谐振时,可能需要更多的元件模型。

电容的频率特性
探讨利用电容器来降低噪声时,充分了解电容器的特性是非常重要的。右下图为电容器的阻抗和频率之间的关系示意图,是电容器最基础的特性之一。
电容器中不仅存在电容量C,还存在电阻分量ESR(等效串联电阻)、电感分量ESL(等效串联电感)、与电容并联存在的EPR(等效并联电阻)。EPR与电极间的绝缘电阻IR或电极间有漏电流的具有相同的意义。可能一般多使用“IR”。
C和ESL形成串联谐振电路,电容器的阻抗原则上呈上图所示的V字型频率特性。到谐振频率之前呈容性特性,阻抗下降。谐振频率的阻抗取决于ESR。过了谐振频率之后,阻抗特性变为感性,阻抗随着频率升高而升高。感性阻抗特性取决于ESL。
谐振频率可通过以下公式计算。
从该公式可以看出,容值越小、ESL越低的电容器,谐振频率越高。如果将其应用于噪声消除,则容值越小、ESL越低的电容器,频率越高,阻抗越低,因此可以很好地消除高频噪声。
虽然这里说明的顺序有些前后颠倒,不过使用电容器降低噪声的对策,是利用了电容器“交流通过时频率越高越容易通过”这个基本特性,将不需要的噪声(交流分量)经由信号、电源线旁路到GND等。
下图为不同容值的电容器的阻抗频率特性。在容性区域,容值越大,阻抗越低。另外,容值越小,谐振频率越高,在感性区域阻抗越低。
下面总结一下电容器阻抗的频率特性。
  • 容值和ESL越小,谐振频率越高,高频区域的阻抗越低。
  • 容值越大,容性区域的阻抗越低。
  • ESR越小,谐振频率的阻抗越低。
  • ESL越小,感性区域的阻抗越低。
简单来说,阻抗低的电容器具有出色的噪声消除能力,不同的电容器其阻抗的频率特性也不同,所以这一特性是非常重要的确认要点。选择降噪用电容器时,请根据阻抗的频率特性来选型(而非容值)。
选择降噪用电容器时,确认频率特性需要意识到连接的是LC的串联谐振电路(而非电容)。
关键要点:
・降噪用电容器的选型需要根据阻抗的频率特性进行(而非容值)。
・容值和ESL越小,谐振频率越高,高频区域的阻抗越低。
・容值越大,容性区域的阻抗越低。
・ESR越小,谐振频率的阻抗越低。
・ESL越小,感性区域的阻抗越低。


下面将介绍采用电容器来降低噪声时的概要和示意图。

使用电容器降低噪声
噪声分很多种,性质也是多种多样的。所以,噪声对策(即降低噪声的方法)也多种多样。在这里主要谈开关电源相关的噪声,因此,请理解为DC电压中电压电平较低、频率较高的噪声。另外,除电容外,还有齐纳二极管和噪声/浪涌/ESD抑制器等降噪部件。不同的噪声性质,所需要的降噪部件也各不相同。如果是DC/DC转换器,多数会根据其电路和电压电平,用LCR来降低噪声。
使用电容器降低噪声的示意图
下面是通过添加电容器来降低DC/DC转换器输出电压噪声的示例。
左侧的波形是输出端LC滤波器的电容为22µF时,在约200MHz的频率范围存在180mVp-p左右的噪声(振铃、反射)。右侧波形是为了降低这种噪声而添加了2200pF电容后的结果。从波形图可以看出,添加2200pF的电容使噪声降低了100mV左右。
这里应该思考的是“为什么是2200pF”。右下图为所添加电容器的阻抗频率特性。
之所以选择2200pF的电容,是因为阻抗在160MHz附近最低,利用这种阻抗特性,可降低噪声幅度约2MHz。这是通过添加电容器来降低目标噪声频率的阻抗,从而降低噪声幅度的手法。像这样通过添加电容器来降低噪声时,需要把握噪声(振铃、反射)的频率,并选择具有相应阻抗的频率特性的电容器。
本文简单介绍了利用电容器来降低噪声的对策。下一篇文章将介绍去耦电容的有效使用方法。
关键要点:
・通过降低目标噪声频率的阻抗来降低噪声幅度。
・降噪用电容器的选型需要根据阻抗的频率特性进行(而非容值)。



去耦电容的有效使用方法
去耦电容有效使用方法的要点大致可以分为以下两种。另外,还有其他几点需要注意。本文就以下三点中的“要点1”进行介绍。
  • ・要点1:使用多个去耦电容
  • ・要点2:降低电容的ESL(等效串联电感)
  • ・其他注意事项

要点1:使用多个去耦电容
去耦电容的有效使用方法之一是用多个(而非1个)电容进行去耦。使用多个电容时,使用相同容值的电容时和交织使用不同容值的电容时,效果是不同的。
・使用多个容值相同的电容时
右图是使用1个22µF的电容时(蓝色)、增加1个变为2个时(红色)、再增加1个变为3个(紫色)时的频率特性。如图所示,当增加容值相同的电容后,阻抗在整个频率范围均向低的方向转变,也就是说阻抗越来越低。这一点可通过思考并联连接容值相同的电容时,到谐振点的容性特性、取决于ESR(等效串联电阻)的谐振点阻抗、谐振点以后的ESL(等效串联电感)影响的感性特性来理解。并联的电容容值是相加的,所以3个电容为66µF,容性区域的阻抗下降。
谐振点的阻抗是3个电容的ESR并联,因此为,假设这些电容的ESR全部相同,则ESR减少至1/3,阻抗也下降。
谐振点以后的感性区域的ESL也是并联,因此为,假设3个电容的ESL全部相同,则ESL减少至1/3,阻抗也下降。
由此可知,通过使用多个相同容值的电容,可在整个频率范围降低阻抗,因此可进一步降低噪声。
・使用多个容值不同的电容时
这些曲线是在22µF的电容基础上并联增加0.1µF、以及0.01µF的电容后的频率特性。通过增加容值更小的电容,可降低高频段的阻抗。相对于一个22µF电容的频率特性来说,0.1µF和0.01µF的特性是合成后的特性(红色虚线)。这里必须注意的是,有些频率点产生反谐振,阻抗反而增高,EMI恶化。反谐振发生于容性特性和感性特性的交叉点。
所增加电容的电容量,一般需要根据目标降噪频率进行选型。
另外,在这里给出的频率特性波形图是理想的波形图,并未考虑PCB板的布局布线等引起的寄生分量。在实际的噪声对策中,需要考虑寄生分量的影响。下一篇文章将介绍第2个要点。
关键要点:
・去耦电容的有效使用方法有两个要点:①使用多个电容,②降低电容的ESL。
・使用多个电容时,容值相同时和不同时的效果不同。



要点2:降低电容的ESL
去耦电容的有效使用方法的第二个要点是降低电容的ESL(即等效串联电感)。虽说是“降低ESL”,但由于无法改变单个产品的ESL本身,因此这里是指“即使容值相同,也要使用ESL小的电容”。通过降低ESL,可改善高频特性,并可更有效地降低高频噪声。
即使容值相同也要使用尺寸较小的电容
对于积层陶瓷电容(MLCC),有时会准备容值相同但尺寸不同的几个封装。ESL取决于引脚部位的结构。尺寸较小的电容基本上引脚部位也较小,通常ESL较小。
右图是容值相同、大小不同的电容的频率特性示例。如图所示,更小的1005尺寸的谐振频率更高,在之后感性区域的频率范围阻抗较低。这正如在“电容的频率特性”中所介绍的,电容的谐振频率是基于以下公式的,从公式中可见,只要容值相同,ESL越低谐振频率越高。另外,感性区域的阻抗特性取决于ESL,这一点也曾介绍过。
关于噪声对策,当需要降低更高频段的噪声时,可以选择尺寸小的电容。
使用旨在降低ESL的电容
积层陶瓷电容中,有些型号采用的是旨在降低ESL的形状和结构。
如图所示,普通电容的电极在短边侧,而LW逆转型的电极则相反,在长边侧。由于L(长度)和W(宽度)相反,故称“LW逆转型”。是通过增加电极的宽度来降低ESL的类型。
三端电容是为了改善普通电容(两个引脚)的频率特性而优化了结构的电容。三端电容是将双引脚电容的一个引脚(电极)的另一端向外伸出作为直通引脚,将另一个引脚作为GND引脚。在上图中,输入输出电极相当于两端伸出的直通引脚,左右的电极当然是导通的。这种输入输出电极(直通引脚)和GND电极间存在电介质,起到电容的作用。
将输入输出电极串联插入电源或信号线(将输入输出电极的一端连接输入端,另一端连接输出端),GND电极接地。这样,由于输入输出电极的ESL不包括在接地端,因此接地的阻抗变得非常低。另外,输入输出电极的ESL通过在噪声路径直接插入,有利于降低噪声(增加插入损耗)。
通过在长边侧成对配置GND电极,可抑制ESL;再采用并联的方式,可使ESL减半。
基于这样的结构,三端电容不仅具有非常低的ESL,而且可保持低ESR,与相同容值相同尺寸的双引脚型电容相比,可显著改善高频特性。
下一章计划对相关的几点注意事项进行介绍。
关键要点:
・去耦电容的有效使用方法有两个要点:①使用多个电容,②降低电容的ESL。
・通过降低电容的ESL,可改善高频特性,并可更有效地降低高频噪声。
・有的电容虽然容值相同,但因尺寸和结构不同而ESL更小。



去耦电容的有效使用方法:其他注意事项
①Q较高的陶瓷电容
电容具有被称为“Q”的特性。下图即表示Q和频率-阻抗特性之间的关系。
当Q值高时,阻抗在特定的窄带会变得非常低。当Q值低时,阻抗虽然不会极度下降,但可以在很宽的频段内降低。这种特性可能有助于符合某些EMC标准。例如,使用电容量变化较大的电容时,如果Q值很高,则可能存在无法消除目标频率噪声的个体。在这种情况下,还有一种通过使用具有低Q的电容来抑制波动影响的手法。
②热风焊盘等的PCB图形
旨在提高散热性的热风焊盘等的PCB图形,图形的电感分量会增加。电感分量的增加会使谐振频率向低频端移动,所以有时可能无法获得理想的噪声消除效果。
③探讨对策时的电容试装
试制后需要对高频噪声采取对策,可以考虑增加小容量的电容器。此时,如下图所示,如果在大容量电容器上安装要增加的电容器(左例),则纵向会增加额外的电感分量,因此不能充分发挥增加电容器的效果。在中间的例子中,虽然未违背“尽可能使小容量电容靠近噪声源”的理论,但阻抗会与实际修改的PCB布局不同。最好的方法是以尽量接近实际修改的配置进行探讨(右例)。
在探讨对策时,也可能会发生虽然噪声试验OK,但安装到修改后的PCB时NG的现象,因此需要在探讨时就有意识地按照实际来安装。
④电容的电容量变化率
噪声对策用的电容的电容量变化率较大时,谐振频率的波动会变大,目标消减频段会产生变化或波动,有时很难找到理想的噪声对策。尤其是需要在窄频段大幅消除噪声时,需要格外注意。下表表示电容量变化率和实际的电容量和谐振频率之间的关系。仔细看这个表的话可以看出,虽然视条件而定,不过很多情况是无法接受的。
电容量变化率(%)
电容量(pF)
谐振频率(MHz)



+20
1,200
145
+10
1,100
152
+5
1,050
155
±0
1,000
159
-5
950
163
-10
900
168
-20
800
178
※  按L=1nH计算
⑤电容器的温度特性
众所众知,电容的特性会受温度影响。目前,EMC测试的温度特性尚未标准化,但在某些应用中,不得不在明显的高温或低温条件/环境下工作、或在会产生较大温度变化的条件/环境下使用。
在这类情况下,非常有可能发生“④电容量变化率”中提到的问题,所以,用于噪声对策的电容,需要尽量使用具有CH、C0G特性的温度特性优异的产品。


关键要点:
・理解Q与频率-阻抗特性之间的关系,并根据目的区分Q的差异。
・高Q电容窄带阻抗急剧下降。低Q电容在较宽频段相对平缓下降。
・PCB图形的热风焊盘等会增加电感分量,使谐振频率向低频端移动。
・探讨对策时的试装,如果不按照现实的修改实际安装,很可能在修改后的PCB板上无法获得探讨时的效果。
・电容量变化率大时,谐振频率会变化,无法获得目标频率理想的噪声消除效果。
・在温度条件和变动较大的严苛应用中,可以探讨使用具有CH、C0G特性的温度特性优异的电容。



总结
要点1:使用多个去耦电容
使用多个电容去耦时,使用多个相同容值的电容和交织使用不同容值的电容时,效果是不同的。
■使用多个相同容值的电容时
在整个频率范围内阻抗下降,可有效降低整体噪声。
■使用多个不同容值的电容时
可降低更高频段的阻抗,可有效降低高频噪声。但是需要注意的是,有些频率会产生反谐振,阻抗反而增高,噪声反而恶化。
要点2:降低电容的ESL
如果容量相同,则ESL越低谐振频率越高,因此通过降低ESL可改善高频特性,从而可更有效地降低高频噪声。
■即使容值相同也要使用尺寸较小的电容
ESL取决于电容引脚部位的结构,因此尺寸较小的电容基本上引脚部位也较小,通常ESL较小。当需要降低更高频段的噪声时,方法之一是选择尺寸小的电容。但是,要注意DC偏置特性。
■使用旨在降低ESL的电容
积层陶瓷电容中,有些型号采用的是旨在降低ESL的形状和结构,比如LW逆转型电容、三端电容。
去耦电容的有效使用方法:其他注意事项
■Q较高的陶瓷电容
当Q值高时,阻抗在特定的窄带会变得非常低。当Q值低时,阻抗虽然不会极度下降,但可以在较宽的频段内降低。
■热风焊盘等的PCB图形
旨在提高散热性的热风焊盘等的PCB图形,图形的电感分量会增加,会使谐振频率向低频端移动,所以有时可能无法获得理想的噪声消除效果。
■探讨对策时的电容试装
增加小容量电容以降低高频噪声时,要基于“尽可能使小容量电容靠近噪声源”的理论,以尽量接近实际修改的配置进行探讨。探讨时如果和修改后的配置不同,阻抗也会不同,很可能无法获得评估时的效果。
■电容的电容量变化率
噪声对策用的电容的电容量变化率较大时,谐振频率的波动会变大,目标消减频段会产生变化或波动,有时很难找到理想的噪声对策。尤其是需要在窄频段大幅消除噪声时,需要格外注意。
■电容的温度特性
电容的特性会受温度影响,因此,在明显的高温、低温、较大温度变化的条件/环境下使用的应用,需要采用温度特性优异的电容。
声明:

本文转载自面包板社区,如涉及作品内容、版权和其它问题,请与工作人员微信(in0723mango),我们将在第一时间和您对接删除处理!
投稿/招聘/广告/课/ 13237418207


电源会产生EMI,根源是什么?


开关电源设计之MOS管驱动电路


扫码添加客服微信,备注“入群”拉您进凡亿教育官方专属技术微信群,与众位电子技术大神一起交流技术问题及心得~

分享💬 点赞👍 在看❤️ “三连”支持!

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论 (0)
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 21浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 238浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 185浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 162浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 20浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 288浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 38浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 308浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 16浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 191浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 55浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 443浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦