电动车加速转向800V,第三代半导体势在必行!


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 720975143


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


电力电子技术与新能源小店


在过去两年中,全球汽车市场见证了对电动汽车的快速需求激增。尽管 COVID-19 大流行严重影响了汽车市场,但电动汽车销量在 2020 年和 2021 年实现了创纪录的增长。例如,2021 年,全球电动汽车销量(BEV 和 PHEV)总计约 580 万辆,同比增长约 79.3%。未来五年市场有望持续保持两位数增长。


这一增长将受到重大财政激励措施的推动,例如所有地区政府实施的购买激励措施和车辆登记税退税。此外,世界各国政府的快速脱碳战略将有助于电动汽车销量的增长。全球已有 20 多个国家宣布在未来 10-30 年内逐步淘汰传统的内燃机汽车,全球有 100 多个国家的目标是在未来几十年内实现净零排放。


此外,几家领先的原始设备制造商已经宣布了远见卓识的计划,以重新配置其产品线以应对预期的电动汽车热潮。下面列出了一些最近的 OEM 公告。


沃尔沃的目标是从 2030 年起实现 100% 的电动汽车销量;福特将从 2030 年起在欧洲实现 100% 的电动汽车销量;通用汽车将从 2035 年起仅销售电动轻型汽车 (LDV);大众汽车宣布,到 2030 年,欧洲的电动汽车销量将达到 70%,中国和美国的销量将达到 50%;Stellantis 宣布,到本十年末,欧洲 70% 的电动汽车销量和美国 35% 的电动汽车销量。


从400V转向800V电池系统,为什么?


2021 年,电动汽车占全球汽车销量的 9% 以上,是 2019 年的近四倍。由于上述因素,预计未来几年电动汽车的渗透率将继续保持高增长轨迹。


然而,要成为目前占主导地位的内燃机车辆的可行替代品,下一代电动汽车需要更长的续航里程、更快的充电能力和更高的功率输出。为了解决这个问题,EV 电池架构需要更高的电压;因此,从 400V 到 800V 的转变是不可避免的。


从 400V 转换到 800V 的好处:


  • 由于高达 350-360kW 的更高充电功率输出,与 400V 电池系统相比,充电时间减少了 50%。这些车辆有可能在不到 23 分钟的时间内从 5% 充电到 80%(200 英里范围)!有了超快的充电速度,就不需要续航里程达 1000 公里的电池


  • 将电池电压从 400V 加倍至 800V 可降低充电所需的电流,从而减少过热并提高功率保持能力。这有助于延长行驶里程和提高性能水平。


截至 2022 年年中,市场上的大多数电动汽车都使用 400V 电池系统。然而,EV 制造商意识到转向 800 V 架构可以带来的技术商业优势。因此,预计未来几年将迅速向 800V 系统过渡,到 2027-2030 年,90% 以上的电动汽车可能会配备 800V 电池系统。


目前,800V EV 处于商业化的早期阶段。奥迪、保时捷、现代和起亚等汽车制造商已经在销售 800V EV 系统,而 LUCID motors 在其车型 Lucid Air 中内置了 900V 电池系统。2019 年推出的保时捷 Taycan 是市场上第一款 800V 电动汽车,充电功率为 270kW,而 Lucid Air 是市场上充电速度最快的电动汽车,充电功率输出为 350kW。现代汽车承诺到 2025 年将推出 23 款配备 800V 系统的 EV 车型。


宽禁带半导体,实现向 800V EV 系统的转变


硅基 MOSFET 和 IGBT 是电动汽车行业中占主导地位的功率半导体器件技术。然而,硅基功率半导体已达到 400V EV 的理论性能极限。因此,随着移动行业向 800V 电池架构过渡,需要更新的材料,如宽带隙 ( WBG )) 提供更好电气和热性能的半导体优于硅基半导体。碳化硅 (SiC) 和氮化镓 (GaN) 是两种 WBG 半导体材料,在电动汽车中获得最大牵引力,适用于牵引逆变器、车载充电器和 DC-DC 转换器等应用。具体而言,SiC 继续吸引所有主要电动汽车制造商的更多兴趣,并被认为是电动汽车中 800V 电池系统的必然选择。所有主要的汽车原始设备制造商都致力于在当前和未来的产品中开发 800V EV 系统。


1、牵引逆变器中的 SiC,支持 800V EV 的关键应用


牵引逆变器是最关键的电动汽车系统之一,负责车辆的整体性能。牵引逆变器在电动汽车中的关键作用是:


a、将电池的直流电转换为牵引电机的交流电

b、将交流电转换回直流电以进行再生制动

c、根据驾驶员输入的加速器控制 EV 电机速度。


重点正在转向开发具有 SiC 模块的 800V 牵引逆变器。几家汽车一级供应商一直在展示他们的 800V 逆变器能力。Delphi Technologies(现已被 BorgWarner 收购)是业内第一家使用 Wolfspeed 的 SiC MOSFET 量产 800V SiC 逆变器的公司。McLaren Applied 在 2022 年初展示了其基于 800V SiC 的牵引逆变器(逆变器平台第 5 代)。Vitesco 与一家北美主要汽车制造商(福特或 Stellantis)签署了一项价值近 10.8 亿美元的交易,从2025 年。同样,Marelli 在 2022 年年中推出了 800V-SiC 牵引逆变器平台。同样,博格华纳正在为一家德国 EV OEM 开发基于 SiC 的逆变器。


2、SiC,在电动汽车牵引逆变器的半导体竞赛中领先


在支持 800V 的牵引逆变器中使用 SiC MOSFET 可实现速度更快、效率更高且重量更轻的 EV 动力传动系统。与 Si 相比,SiC 产生的热量更少,对温度的敏感性更低,并且能够实现更高效的电源开关。更少的热量释放导致更轻的冷却系统,从而使逆变器的重量更轻且占地面积更小。SiC 中较高的带隙导致高温下的漏电流较低,而高临界场电压显着降低导通电阻,从而实现更小/更薄的器件。这降低了开关损耗,提高了载流能力,并实现了更快的开关。导热性是 SiC 脱颖而出的另一个关键方面。SiC 模块可以处理高达 200 ◦的结温C 与 Si 相比,Si 可以承受高达 80 ° C 的温度。另一种著名的 WBG 半导体 GaN 在 800V EV 应用中处于非常小众的开发和应用阶段。


图 1 显示了 Si、SiC 和 GaN 材料特性的比较。



用于 800V EV 应用的 GaN,引领技术进步


GaN 的带隙、临界电场和饱和速度几乎与 SiC 相当,甚至更好。然而,其低导热性对应用于 EV 牵引逆变器等高功率和温度应用提出了挑战。对于 GaN,650V 模块是在 400V EV 系统中找到应用的最佳选择,而 400V EV 系统几乎由成熟的硅基芯片主导。然而,当电压增加到 800V 时,GaN 由于其较低的热导率而失去效率。该行业正在致力于开发垂直/3D GaN 结构以支持高功率 EV 应用。


如前所述,用于 EV 中 800V 系统的 GaN 技术仍处于早期商业化阶段。当前的 GaN 器件与其他功率器件(基于 Si 和 SiC)的主要区别之一是前者主要使用横向器件结构来导电(Si 上的 GaN、SiC 上的 GaN 或蓝宝石上的 GaN),而后者(Si 和 SiC)器件垂直传导。因此,为了通过横向 GaN 获得更高的电压,芯片尺寸需要变大,从缩放的角度来看这是不可行的。


一些行业创新者正致力于通过垂直 GaN 结构和横向结构中的高级封装技术等进步来提高 GaN 器件的效率,以使 GaN FET 可用于 800V EV 应用。例如,Odyssey Semiconductor 最近展示了其 1200V 垂直(GaN on GaN)器件,工程样品预计将在 2023 年由几家汽车 OEM 进行测试。垂直 GaN 结构以尽可能小的尺寸带来 GaN 的高开关效率优势芯片尺寸与目前仅由 Si 和 SiC 解决的电压和功率水平相关。同样,NexGen Power Systems 最近测试了其具有商业可行性的 1200V 垂直 GaN Fin-JFET,在其中,直接使用了VisIC的D3GaN (direct drive d-mode)技术 。2022 年初,Transphorm 展示了其 1200V 横向 GaN 功率晶体管,预计将于 2023 年提供样品。此类技术发展和热议凸显了 GaN 作为电动汽车应用市场颠覆者的潜力。


400V 架构的电动汽车也要转向宽禁带


由于明显的原因,转向 800V EV 是不可避免的,但同样重要的是要注意 400V 系统不会被淘汰。预计 400V EV 将用于对成本敏感的市场。此外,由于全球各国制定了新的效率目标,即使是 400V 电池系统的电动汽车也可能在短期内跟随特斯拉的脚步(其 400V 特斯拉 Model 3 中的 SiC 模块)过渡到 SiC。例如,中国在 2020 年发布了 2021 年至 2023 年的汽车销量目标,其中将某些电动汽车的最大可接受能耗从约 23kW/100kms 降低至约 18kW/100kms。SiC 由于其耐热性、低导通电阻和比 Si 更快的开关速度,每千瓦时的行驶里程增加了近 5-10%。因此,ROHM Semiconductor 和 STMicroelectronics 等公司也为 400V EV 提供 SiC 解决方案。


随着 SiC 成为电动汽车的重要趋势,芯片制造商迫切需要进行更好的规划,以确保最佳产能和稳健的供应链,以应对即将到来的电动汽车 SiC 激增。从平面结构到沟槽结构的转变,从6英寸到8英寸晶圆的转移,以及产能扩张举措将带来成本和性能优势。此外,为了改善 SiC 晶圆缺陷问题并实现 SiC 供应链的自给自足,行业正在见证半导体公司收购供应方公司的垂直整合趋势。此外,汽车原始设备制造商正在冒险设计和制造自己的牵引逆变器,从而与芯片制造商建立直接关系,这在传统行业中并不常见。


结论


随着电动汽车行业从 400V 电池系统转向 800V 电池系统,转向 WBG 半导体似乎是不可避免的。由于其技术规格,SiC 目前是汽车制造商的完美选择。GaN 是一种相对较新的利基技术,由于其低导热性和横向结构,目前在 EV 电源应用中的应用受到限制。然而,垂直 GaN 结构和先进封装等技术进步有望为 800V EV 牵引逆变器中的 GaN 提供重要的市场机会。


短期内,由于全球各国制定了严格的排放和效率标准,高端 400V EV 也可能采用基于 WBG 的牵引逆变器。从长远来看,主要在成本敏感市场中的入门级和中级 400V EV 最终将过渡到 SiC 和 GaN 技术。


该行业正在见证传统供应关系的彻底变革。汽车原始设备制造商和一级供应商正在寻求通过与芯片制造商的战略合作和直接关系来确保其组件和芯片供应。


此外,汽车制造商正在转向内部设计牵引逆变器,而不是依赖一级供应商。此外,芯片制造商通过收购供应方公司进行垂直整合,以更好地控制供应质量和产品开发。电动汽车从 400V 电池系统过渡到 800V 电池系统的预期速度是业界前所未有的,而半导体领域在实现这一过程中起着至关重要的作用。


随着硅不再能够满足电动汽车的性能需求,对 WBG 半导体的竞争是全力以赴。器件技术,无论是 Si、SiC 还是 GaN,都将找到维持市场转型的方法,并将共存,没有任何技术可以完全取代另一种技术。还有待观察的是,谁吃掉了对方的多少份馅饼!

文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电力电子技术与新能源板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦