嵌入式设备系统日志记录方法

混说Linux 2023-03-28 11:32

点击左上方蓝色“混说Linux”,选择“设为星标

第一时间看干货文章



 1

在嵌入式设备应用场景中,系统日志时常可以监控设备软件的运行状态,及时记录问题点以及关键信息,方便开发人员后期定位以及解决问题。本文将讲述一种简易的系统日志记录方法,用于保存设备的系统日志,视具体嵌入式设备情况而定,可存储在MCU内部Flash、外部Flash、EEPROM等,本文采用外部Flash作为示例展开介绍。

 

思路分析

对于系统日志可以当成文件系统,可以划分为三个重要部分:目录区、参数区、日志区。目录区:根据日期进行归类,记录当天的日志的存储地址、日志索引、日志大小,通过目录可以获取整个日志文件的概况;参数区:存储记录日志写位置、目录项个数、写状态等参数;日志区:这是我们主要的存储区,记录系统的日志,支持环写。这三个区域都需要占用部分内存,可以自行分配大小。


实现的效果如下图所示,设置通过指令可查询到整个日志目录区的概况。

查询系统日志目录:AT+CATALOG?
LOG_ID: 存储日志按日期分类,该ID用于查询对应日期日志,从1开始计数;
LOG_DATE: 系统日志存储日期;
LOG_ADDR: 系统日志存储外部FLASH地址;
LOG_OFFSET: 系统日志存储偏移量(各日期日志大小,单位:字节)。


查询指定日期系统日志:AT+CATALOG=

LOG_ID:在查询系统日志目录时获取,当LOG_ID为0时,为查询整个系统日志。


另外提供移除系统日志(清除日志目录)指令:AT+RMLOG,后面将讲述具体实现。

 

FLASH内存划分

FLASH内存需要看具体设备进行合理划分,目录区、参数区与日志区实现环形存储,延长擦写寿命。
#define FLASH_SECTOR_SIZE   ((uint32_t)0x001000)
#define FLASH_BLOCK_32K_SIZE  ((uint32_t)0x008000)
#define FLASH_BLOCK_64K_SIZE  ((uint32_t)0x010000)
#define SECTOR_MASK             (FLASH_SECTOR_SIZE - 1)         /*扇区掩码 ------*/
#define SECTOR_BASE(addr)       (addr & (~SECTOR_MASK))        /*扇区的基地址 --*/
#define SECTOR_OFFSET(addr)     (addr & SECTOR_MASK)           /*扇区内的偏移 --*/

#define BLOCK_32K_BASE(addr)  (addr & (~(FLASH_BLOCK_32K_SIZE)))
#define BLOCK_64K_BASE(addr)  (addr & (~(FLASH_BLOCK_64K_SIZE)))

typedef enum {
    FLASH_BLOCK_4K  = 0,          /**< flash erase block size 4k */
    FLASH_BLOCK_32K = 1,          /**< flash erase block size 32k */
    FLASH_BLOCK_64K = 2           /**< flash erase block size 64k */
}flash_block_t;

/* flash 空间索引 */
typedef enum{
    FLASH_CATALOG_ZONE = 0,
    FLASH_SYSLOG_PARA_ZONE,
    FLASH_SYSLOG_ZONE,
    FLASH_ZONEX,
}flash_zone_e;

typedef struct{
    flash_zone_e zone;
    uint32_t start_address;
    uint32_t end_address;
}flash_table_t;

/* 地址划分 */
static const flash_table_t flash_table[] = {
  { .zone = FLASH_CATALOG_ZONE,       .start_address = 0x03200000, .end_address = 0x032FFFFF},  
  { .zone = FLASH_SYSLOG_PARA_ZONE,   .start_address = 0x03300000, .end_address = 0x033FFFFF},  
  { .zone = FLASH_SYSLOG_ZONE,        .start_address = 0x03400000, .end_address = 0x03FFFFFF},  
};


Flash底层实现擦除、读写操作接口,由读者自行实现。

flash_table_t *get_flash_table(flash_zone_e zone)
{
  int i = 0;
  for (i = 0; i < flash_zone_count; i++) {
    if (zone == flash_table[i].zone) 
      return (flash_table_t *)&flash_table[i];
  }
  
  return NULL;  
}

int flash_erase(flash_zone_e zone, uint32_t address, flash_block_t block_type)
{
  flash_table_t *flash_table_tmp = get_flash_table(zone);
  
  if (flash_table_tmp == NULL)
    return -1;
    
  if (address < flash_table_tmp->start_address ||address > flash_table_tmp->end_address) 
    return -1;

  return bsp_spi_flash_erase(address, block_type);
}

int flash_write(flash_zone_e zone, uint32_t address, const uint8_t*data, uint32_t length)
{
  flash_table_t *flash_table_tmp = get_flash_table(zone);
     
  if (flash_table_tmp == NULL)
     return -1;

  if ((address < flash_table_tmp->start_address) ||((address + length) > flash_table_tmp->end_address))
     return -1;

  return bsp_spi_flash_buffer_write(address, (uint8_t *)data, length);
}

int flash_read(flash_zone_e zone, uint32_t address, uint8_t*buffer, uint32_t length)
{
  flash_table_t *flash_table_tmp = get_flash_table(zone);
  
  if (flash_table_tmp == NULL)
    return -1;

  if ((address < flash_table_tmp->start_address) ||((address + length) > flash_table_tmp->end_address))
    return -1;
    
  bsp_spi_flash_buffer_read(buffer, address, length);
  return 0;
}

 

参数与结构体定义

日志数据存储时间戳,便于问题定位,需要实现RTC接口调用。
typedef struct {
    uint16_t  Year;  /* 年份:YYYY */
    uint8_t  Month;  /* 月份:MM */
    uint8_t  Day;  /* 日:DD */
    uint8_t     Hour;  /* 小时:HH */
    uint8_t     Minute;  /* 分钟:MM */
    uint8_t  Second;  /* 秒:SS */
}time_t;   

int bsp_rtc_get_time(time_t *date);


参数区应当保证数据的正确性,应加入参数校验存储,定义校验结构体。

#define SYSTEM_LOG_MAGIC_PARAM  0x87654321 /* 日志参数标识符 */
typedef struct {
    uint32_t magic;  /* 参数标识符 */
    uint16_t crc;  /* 校验值 */
    uint16_t len;  /* 参数长度 */
single_sav_t;


参数区需记录当前日志记录的写位置,以及目录项个数,还有日志区和目录区环写状态,并且存储最新时间等等。

/* 日志区参数 */
typedef struct {
    uint32_t   write_pos;            /* 写位置 */
    uint32_t   catalog_num;           /* 目录项个数 */
    uint8_t    log_cyclic_status;   /* 系统日志环形写状态 */   
    uint8_t    catalog_cyclic_status; /* 日志目录环形写状态 */
    time_t     log_latest_time;    /* 存储最新时间 */
}system_log_t;

/* 目录区参数 */
typedef struct {
    uint32_t log_id;    /* 日志索引 */ 
    uint32_t log_addr;    /* 日志地址 */
    uint32_t log_offset;  /* 日志偏移大小,单位:字节 */
    time_t   log_time;    /* 日志存储时间 */
}system_catalog_t;

/* 系统日志参数 */
typedef struct {
    single_sav_t crc_val;
    system_log_t system_log;
    system_catalog_t system_catalog;
}sys_log_param_t;

typedef struct {
    uint8_t system_log_print_enable; /* 系统日志打印使能 */
    uint16_t system_log_print_id;    /* 打印指定id系统日志 */
    uint32_t system_log_param_addr;  /* 当前日志写地址 */
sys_ram_t;

sys_ram_t SysRam;
sys_log_param_t SysLogParam;

sys_ram_t *gp_sys_ram = &SysRam;
sys_log_param_t *gp_sys_log = &SysLogParam;

 

实现接口说明

CRC校验接口,可以自定义实现。
/* 16位CRC校验高位表 */
static const uint8_t auchCRCHi[]={
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,

0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40,0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,
0x00,0xc1,0x81,0x40,0x01,0xc0,0x80,0x41,0x01,0xc0,0x80,0x41,0x00,0xc1,0x81,0x40
};

/* 16位CRC校验低位表 */
static const uint8_t auchCRCLo[]={
0x00,0xc0,0xc1,0x01,0xc3,0x03,0x02,0xc2,0xc6,0x06,0x07,0xc7,0x05,0xc5,0xc4,0x04,
0xcc,0x0c,0x0d,0xcd,0x0f,0xcf,0xce,0x0e,0x0a,0xca,0xcb,0x0b,0xc9,0x09,0x08,0xc8,
0xd8,0x18,0x19,0xd9,0x1b,0xdb,0xda,0x1a,0x1e,0xde,0xdf,0x1f,0xdd,0x1d,0x1c,0xdc,
0x14,0xd4,0xd5,0x15,0xd7,0x17,0x16,0xd6,0xd2,0x12,0x13,0xd3,0x11,0xd1,0xd0,0x10,
0xf0,0x30,0x31,0xf1,0x33,0xf3,0xf2,0x32,0x36,0xf6,0xf7,0x37,0xf5,0x35,0x34,0xf4,
0x3c,0xfc,0xfd,0x3d,0xff,0x3f,0x3e,0xfe,0xfa,0x3a,0x3b,0xfb,0x39,0xf9,0xf8,0x38,
0x28,0xe8,0xe9,0x29,0xeb,0x2b,0x2a,0xea,0xee,0x2e,0x2f,0xef,0x2d,0xed,0xec,0x2c,
0xe4,0x24,0x25,0xe5,0x27,0xe7,0xe6,0x26,0x22,0xe2,0xe3,0x23,0xe1,0x21,0x20,0xe0,

0xa0,0x60,0x61,0xa1,0x63,0xa3,0xa2,0x62,0x66,0xa6,0xa7,0x67,0xa5,0x65,0x64,0xa4,
0x6c,0xac,0xad,0x6d,0xaf,0x6f,0x6e,0xae,0xaa,0x6a,0x6b,0xab,0x69,0xa9,0xa8,0x68,
0x78,0xb8,0xb9,0x79,0xbb,0x7b,0x7a,0xba,0xbe,0x7e,0x7f,0xbf,0x7d,0xbd,0xbc,0x7c,
0xb4,0x74,0x75,0xb5,0x77,0xb7,0xb6,0x76,0x72,0xb2,0xb3,0x73,0xb1,0x71,0x70,0xb0,
0x50,0x90,0x91,0x51,0x93,0x53,0x52,0x92,0x96,0x56,0x57,0x97,0x55,0x95,0x94,0x54,
0x9c,0x5c,0x5d,0x9d,0x5f,0x9f,0x9e,0x5e,0x5a,0x9a,0x9b,0x5b,0x99,0x59,0x58,0x98,
0x88,0x48,0x49,0x89,0x4b,0x8b,0x8a,0x4a,0x4e,0x8e,0x8f,0x4f,0x8d,0x4d,0x4c,0x8c,
0x44,0x84,0x85,0x45,0x87,0x47,0x46,0x86,0x82,0x42,0x43,0x83,0x41,0x81,0x80,0x40
};

/* 实现crc功能函数 */
static uint16_t CRC16(uint8_t* puchMsg, uint16_t usDataLen)
{
    uint8_t uchCRCHi=0xff;
    uint8_t uchCRCLo=0xff;
    uint16_t uIndex;
    
    while(usDataLen--) {
        uIndex=uchCRCHi^*(puchMsg++);
        uchCRCHi=uchCRCLo^auchCRCHi[uIndex];
        uchCRCLo=auchCRCLo[uIndex];
    }
    
    return uchCRCHi<<8|uchCRCLo;
}


保存系统日志参数,每实现写日志操作后都需要保存当前的参数值,防止意外丢失。

void save_system_log_param(void)
{
    uint32_t i = 0;
    uint32_t addr = 0;
    uint32_t remainbyte = 0;
    uint32_t start_addr;
    int len = sizeof(sys_log_param_t);
    uint8_t *pdata = (uint8_t *)&SysLogParam;
    flash_table_t *flash_tmp = get_flash_table(FLASH_SYSLOG_PARA_ZONE);
    
    /* 校验参数 */
    gp_sys_log->crc_val.magic = SYSTEM_LOG_MAGIC_PARAM;
    gp_sys_log->crc_val.len = sizeof(sys_log_param_t) - sizeof(single_sav_t);
    gp_sys_log->crc_val.crc = CRC16(&pdata[sizeof(single_sav_t)], gp_sys_log->crc_val.len);

    start_addr = gp_sys_ram->system_log_param_addr;
    /* 剩余内存不够写,则重新从起始地址开始写,实现环形存储功能  */
    if ((start_addr + len) > flash_tmp->end_address) { 
        start_addr = flash_tmp->start_address;
    }
    gp_sys_ram->system_log_param_addr = start_addr + len;
    /* 首地址存储,擦除整个系统日志参数存储区,如果划分的内存较大,可能出现第一次擦写等待时间较长,
       但实际应用嵌入式设备应该不会占用太多的内存存储系统日志,只当为辅助使用,有额外应用可自行实现 */

    if (flash_tmp->start_address == start_addr) {
        /*for (i = flash_tmp->start_address; i < flash_tmp->end_address; i+= FLASH_SECTOR_SIZE) 
            flash_erase(FLASH_SYSLOG_PARA_ZONE, SECTOR_BASE(i), FLASH_BLOCK_4K);
        */

        addr = flash_tmp->start_address;
        do {
            if ((addr + FLASH_BLOCK_64K_SIZE) <= flash_tmp->end_address) {
                flash_erase(FLASH_SYSLOG_PARA_ZONE, BLOCK_64K_BASE(i), FLASH_BLOCK_64K);
                addr += FLASH_BLOCK_64K_SIZE;
            } else if ((addr + FLASH_BLOCK_32K_SIZE) <= flash_tmp->end_address) {
                flash_erase(FLASH_SYSLOG_PARA_ZONE, BLOCK_32K_BASE(i), FLASH_BLOCK_32K);
                addr += FLASH_BLOCK_32K_SIZE;
            } else if ((addr + FLASH_SECTOR_SIZE) <= flash_tmp->end_address) {
                flash_erase(FLASH_SYSLOG_PARA_ZONE, SECTOR_BASE(i), FLASH_BLOCK_4K);
                addr += FLASH_SECTOR_SIZE;
            } else {
                break;
            }
        } while (addr < flash_tmp->end_address); 
    }

    remainbyte = FLASH_SECTOR_SIZE - (start_addr % FLASH_SECTOR_SIZE);
    if (remainbyte > len) {
        remainbyte = len;
    }
    while (1) {
        flash_write(FLASH_SYSLOG_PARA_ZONE, start_addr, pdata, remainbyte);
        if (remainbyte == len) {
            break;
        } else {
            pdata += remainbyte;
            start_addr += remainbyte;
            len -= remainbyte;
            remainbyte = (len > FLASH_SECTOR_SIZE) ? FLASH_SECTOR_SIZE : len;
        }
    }
}


导入系统日志默认参数接口,初始化默认参数或者移除日志。

void load_system_log_default_param(void)
{
    /* 系统日志默认参数 */
    /* 目录环写状态标志 */
    gp_sys_log->system_log.catalog_cyclic_status = 0x00;
    /* 目录项个数 */
    gp_sys_log->system_log.catalog_num = 0;
    /* 日志环写标志 , 1:环写状态 */
    gp_sys_log->system_log.log_cyclic_status = 0;
    /* 设置默认值,实际会重新从RTC获取最新时间 */
    gp_sys_log->system_log.log_latest_time.Year = 2019;
    gp_sys_log->system_log.log_latest_time.Month = 5;
    gp_sys_log->system_log.log_latest_time.Day = 8;
    gp_sys_log->system_log.log_latest_time.Hour = 13;
    gp_sys_log->system_log.log_latest_time.Minute = 14;
    gp_sys_log->system_log.log_latest_time.Second = 10;
    /* 日志写位置从0开始 */
    gp_sys_log->system_log.write_pos = 0;
    
    gp_sys_log->system_catalog.log_addr = 0;
    gp_sys_log->system_catalog.log_id = 0;
    gp_sys_log->system_catalog.log_offset = 0;
    gp_sys_log->system_catalog.log_time.Year = 2019;
    gp_sys_log->system_catalog.log_time.Month = 5;
    gp_sys_log->system_catalog.log_time.Day = 8;
    gp_sys_log->system_catalog.log_time.Hour = 12;
    gp_sys_log->system_catalog.log_time.Minute = 12;
    gp_sys_log->system_catalog.log_time.Second = 14;
    
    gp_sys_log->crc_val.magic = SYSTEM_LOG_MAGIC_PARAM;

    /* 导入默认参数后进行保存 */
    save_system_log_param();
}


设备开机或者复位都会进行导入系统日志参数操作,恢复日志读写参数,参数区为频繁读写操作区域,每一次写操作都会进行一次偏移,有效的导入参数方法是从参数区结束地址到起始地址进行扫描,扫描不到合法的参数则会导入默认日志参数。

/* 参数初始化,在终端启动时调用 */
int load_system_log_param(void)
{
    uint32_t i = 0;
    single_sav_t psav;
    uint32_t end_addr;
    uint32_t interal = sizeof(sys_log_param_t);
    int data_len = sizeof(sys_log_param_t) - sizeof(single_sav_t);
    uint8_t *pram = (uint8_t *)&SysLogParam;
    flash_table_t *flash_tmp = get_flash_table(FLASH_SYSLOG_PARA_ZONE);
    
    end_addr =flash_tmp->end_address - (flash_tmp->end_address - flash_tmp->start_address) % interal;
    for (i = end_addr - interal; i > flash_tmp->start_address; i -= interal) {
        flash_read(FLASH_SYSLOG_PARA_ZONE, i, (uint8_t *)&psav, sizeof(single_sav_t));
        if ((psav.magic == SYSTEM_LOG_MAGIC_PARAM) && (psav.len ==data_len)) {   
            flash_read(FLASH_SYSLOG_PARA_ZONE, i + sizeof(single_sav_t), &pram[sizeof(single_sav_t)], data_len);
            if (psav.crc != CRC16(&pram[sizeof(single_sav_t)], data_len)) 
                continue;
            gp_sys_ram->system_log_param_addr = i;
            log_info("Load System Log Param Addr[0x%08x]!", gp_sys_ram->system_log_param_addr);
            return 0;
        }
    }
    
    /* 扫描不到合法的参数,导入默认系统日志参数 */
    load_system_log_default_param();
    /* 获取日志写地址 */
    gp_sys_ram->system_log_param_addr = flash_tmp->start_address;
    log_info("Load System Log Param Addr(Default)[0x%08x]!", gp_sys_ram->system_log_param_addr);
    return 1;
}


读写系统日志目录接口,读写指定日志索引目录信息。实际实现会定义最新的目录信息存储在日志参数区,当日期发生改变,则表示当前目录信息已经完结,将最新的目录信息录入日志目录区保存,最多每天写入一次目录区。

/* 读取日志目录区指定日志索引目录信息 */
int system_catalog_read(system_catalog_t *catalog, uint32_t id)
{
    uint32_t addr;
    int rlen = sizeof(system_catalog_t);
    uint8_t *pbuf = (uint8_t *)catalog;
    flash_table_t *flash_tmp = get_flash_table(FLASH_CATALOG_ZONE);

    if (0 == id) 
        return -1;
    addr = flash_tmp->start_address + (rlen * (id - 1));
    if (addr > flash_tmp->end_address) 
        return -1;
        
    return flash_read(FLASH_CATALOG_ZONE, addr, pbuf, rlen);
}

/* 写日志目录区目录信息 */
int system_catalog_write(system_catalog_t *catalog, uint32_t id)
{
    uint32_t start_offset;
    uint32_t start_addr;
    uint32_t start_base;
    uint32_t remainbyte;
    int wlen = sizeof(system_catalog_t);
    uint8_t *pdata = (uint8_t *)catalog;
    flash_table_t *flash_tmp = get_flash_table(FLASH_CATALOG_ZONE);
    
    if (0 == id) return -1;
    start_addr = flash_tmp->start_address + wlen * (id - 1);
    if ((start_addr + wlen) > flash_tmp->end_address) {
        start_addr = flash_tmp->start_address;
    }
    
    /* 本扇区剩余空间大小 */
    remainbyte = FLASH_SECTOR_SIZE - (start_addr % FLASH_SECTOR_SIZE);
    /* 写入数据长度小于本扇区剩余长度,直接写入 */
    if (remainbyte > wlen) {
        remainbyte = wlen;
    }
    /* 写目录次数不会太频繁,视具体情况改写操作实现 */
    while (1) {
        start_base = SECTOR_BASE(start_addr);
        start_offset = SECTOR_OFFSET(start_addr);
        flash_read(FLASH_CATALOG_ZONE, start_base, sector_buf, FLASH_SECTOR_SIZE);
        flash_erase(FLASH_CATALOG_ZONE, start_base, FLASH_BLOCK_4K);
        memcpy((char *)§or_buf[start_offset], pdata, remainbyte);
        flash_write(FLASH_CATALOG_ZONE, start_base, sector_buf, FLASH_SECTOR_SIZE);
        if (remainbyte == wlen) {
            break;
        } else {
            pdata += remainbyte;
            start_addr += remainbyte;
            wlen -= remainbyte;
            remainbyte = (wlen > FLASH_SECTOR_SIZE) ? FLASH_SECTOR_SIZE : wlen;
        }
    }
    
    return 0;
}


打印系统日志目录区信息,可实现通过指令查询到目录区信息。

int system_catalog_all_print(void)
{
    int i = 0;
    system_catalog_t catalog;

    printf("System Log Command Information:\r\n");
    printf("Query Specifies Log : AT+CATALOG=\r\n");
    printf("Query All Log : AT+CATALOG=<0>\r\n\r\n");
    printf("Query All System Catalog:\r\n");
    printf("LOG_ID  LOG_DATE  LOG_ADDR  LOG_OFFSET \r\n");
    for (i = 0; i < gp_sys_log->system_log.catalog_num; i++) {
        /* 当前最新目录信息 */  
        if (i == (gp_sys_log->system_catalog.log_id - 1)) {
            catalog = gp_sys_log->system_catalog; /* 获取当前最新目录信息 */
        } else {
            system_catalog_read(&catalog, i + 1);
        }
        printf("%d  %04d-%02d-%02d  0x%08X  %d \r\n"
            catalog.log_id, catalog.log_time.Year, catalog.log_time.Month, catalog.log_time.Day, 
            catalog.log_addr, catalog.log_offset);
        memset((char *)&catalog, 0sizeof(system_catalog_t));
    }
    return 0;
}


读取指定日志目录索引信息接口,可指定日志索引或者读取全部日志数据。

int system_log_task(int argc)
{
    int rlen = 0;
    uint32_t offset, start_addr, end_addr;
    system_catalog_t catalog;
    flash_table_t *flash_tmp =get_flash_table(FLASH_SYSLOG_ZONE);
    
    if (0 == gp_sys_ram->system_log_print_enable) 
        return 1;

    gp_sys_ram->system_log_print_enable = 0x00;
    if (gp_sys_ram->system_log_print_id == ALL_LOG_PRINT) {
        /* log回环写标志,打印整个LOG存储区 */
        if (0x01 == gp_sys_log->system_log.log_cyclic_status) { 
            start_addr = flash_tmp->start_address;
            end_addr = flash_tmp->end_address;
            offset = end_addr - start_addr;
        } else {
            start_addr = flash_tmp->start_address;
            end_addr = start_addr + gp_sys_log->system_log.write_pos;
            offset = gp_sys_log->system_log.write_pos;
        }
    } else { /* 读取指定ID日志 */
        if (gp_sys_ram->system_log_print_id == gp_sys_log->system_catalog.log_id) {
            catalog = gp_sys_log->system_catalog;
        } else {
            system_catalog_read(&catalog, gp_sys_ram->system_log_print_id);
        }
        start_addr = catalog.log_addr;
        offset = catalog.log_offset;
    } 

    if (0 == offset)
        return 1;

    while (1) {
        rlen = (offset > 512) ? 512 : offset;
        system_log_read(sector_buf, start_addr, rlen);
        HAL_Delay(80);
        /* 目录信息通过调式串口打印 */
        bsp_debug_send(sector_buf, rlen);
        start_addr += rlen;
        offset -= rlen;
        if (0 == offset) 
            break;
    }
    return 0;
}


存储系统日志接口,实现更新存储日期,当写位置为扇区地址,则擦除一个扇区作为存储日志,这样避免每写一次就擦除一次。

int system_log_write(uint8_t *wbuf, int wlen)
{
    uint32_t start_addr;
    uint8_t *pdata = wbuf;
    uint32_t remainbyte;
    int system_catalog_max_id;
    flash_table_t *flash_tmp =get_flash_table(FLASH_SYSLOG_ZONE);
    
    /* 计算目录区的最大存储目录项个数 */
    system_catalog_max_id = ((flash_tmp->end_address - flash_tmp->start_address) / sizeof(system_catalog_t));
    start_addr = flash_tmp->start_address + gp_sys_log->system_log.write_pos;
    /* 存储数据地址大于规划内存地址范围处理 */
    if ((start_addr + wlen) > flash_tmp->end_address) { 
        start_addr = flash_tmp->start_address;
        /* 写位置偏移量重置 */
        gp_sys_log->system_log.write_pos = 0;
        /* LOG回环存储标志置位 */
        gp_sys_log->system_log.log_cyclic_status = 0x01
    }
    /* 写位置偏移 */
    gp_sys_log->system_log.write_pos += wlen; 

    if ((gp_sys_log->system_log.log_latest_time.Year != gp_sys_log->system_catalog.log_time.Year) ||
        (gp_sys_log->system_log.log_latest_time.Month != gp_sys_log->system_catalog.log_time.Month) ||
        (gp_sys_log->system_log.log_latest_time.Day != gp_sys_log->system_catalog.log_time.Day)) {

        /* 日期改变,记录目录信息,当log_id为0,则不写入 */
        system_catalog_write(&gp_sys_log->system_catalog, gp_sys_log->system_catalog.log_id);
        /* 记录存储日期 */
        gp_sys_log->system_catalog.log_time = gp_sys_log->system_log.log_latest_time;
        
        if ((gp_sys_log->system_catalog.log_id + 1) >= system_catalog_max_id) {
            gp_sys_log->system_log.catalog_num = system_catalog_max_id; /* 目录循环写,目录数应为最大 */
            gp_sys_log->system_log.catalog_cyclic_status = 1/* 目录回环写标志 */
        } else {
            if (0 == gp_sys_log->system_log.catalog_cyclic_status) {
                /* 获取目录数 */
                gp_sys_log->system_log.catalog_num = gp_sys_log->system_catalog.log_id + 1
            }
        }
        
        /* 存储最新目录项信息 */
        gp_sys_log->system_catalog.log_id = (gp_sys_log->system_catalog.log_id + 1) % system_catalog_max_id;
        gp_sys_log->system_catalog.log_addr = start_addr;
        gp_sys_log->system_catalog.log_offset = wlen; 
    } else {
        gp_sys_log->system_catalog.log_offset += wlen; 
    }
    
    /* 写位置为存储起始地址并且不为扇区首地址 */
    if ((flash_tmp->start_address == start_addr) && (SECTOR_OFFSET(flash_tmp->start_address))){
        flash_read(FLASH_SYSLOG_ZONE, SECTOR_BASE(start_addr), sector_buf, FLASH_SECTOR_SIZE);
        flash_erase(FLASH_SYSLOG_ZONE, SECTOR_BASE(start_addr), FLASH_BLOCK_4K);
        /* 将扇区头部至起始地址区间的数据回写 */
        flash_write(FLASH_SYSLOG_ZONE, SECTOR_BASE(start_addr), §or_buf[0], SECTOR_OFFSET(start_addr)); 
    }
    /* 写位置为扇区首地址,则擦除一个扇区的存储区    */
    if (0 == SECTOR_OFFSET(start_addr)) {
        flash_erase(FLASH_SYSLOG_ZONE, SECTOR_BASE(start_addr), FLASH_BLOCK_4K);
    }

    /* 本扇区剩余空间大小 */
    remainbyte = FLASH_SECTOR_SIZE - (start_addr % FLASH_SECTOR_SIZE);
    /* 写入数据长度小于本扇区剩余长度,直接写入 */
    if (remainbyte > wlen) {
        remainbyte = wlen;
    }
    while (1) {
        flash_write(FLASH_SYSLOG_ZONE, start_addr, pdata, remainbyte);
        if (remainbyte == wlen) {
            break;
        } else {
            pdata += remainbyte;
            start_addr += remainbyte;
            wlen -= remainbyte;
            remainbyte = (wlen > FLASH_SECTOR_SIZE) ? FLASH_SECTOR_SIZE : wlen;
            /* 扇区首地址则擦除整个扇区,该扇区数据不保存 */
            if (0 == SECTOR_OFFSET(start_addr)) {
                flash_erase(FLASH_SYSLOG_ZONE, SECTOR_BASE(start_addr), FLASH_BLOCK_4K);
            }
        }
    }

    /* 环形存储参数 */
    save_system_log_param();
    return 0;
}
 
系统调试对接

为了更好记录系统日志,将应用调试等级结合一块,实现记录错误调试信息以及需要保存的关键信息。定义的调试等级有:关闭调试等级、错误调试等级、警告调试等级、关键调试等级、debug调试等级,而LOG_RECORD_LEVEL将主动保存日志并输出信息,LOG_ERROR_LEVEL会存储对应的日志信息,但需要根据应用调试等级输出信息。设置与读取应用调试等级由读者自行定义。
#define LOG_CLOSE_LEVEL    0x00 /* 关闭调试信息 */
#define LOG_ERROR_LEVEL    0x01 /* 错误调试信息 */
#define LOG_WARN_LEVEL    0x02 /* 警告调试信息 */
#define LOG_INFO_LEVEL    0x03 /* 关键调试信息 */
#define LOG_DEBUG_LEVEL    0x04 /* debug调试信息 */
#define LOG_RECORD_LEVEL   0x10 /* 保存日志并输出信息 */ 
#define LOG_PRINT_LEVEL    0xff

#define SET_LOG_LEVEL(LEVEL)  (gp_sys_param->system_print_level = LEVEL)
#define GET_LOG_LEVEL()    (gp_sys_param->system_print_level)

#define log_debug(fmt, args...)  log_format(LOG_DEBUG_LEVEL, fmt, ##args)
#define log_info(fmt, args...)  log_format(LOG_INFO_LEVEL, fmt, ##args)
#define log_warn(fmt, args...)  log_format(LOG_WARN_LEVEL, fmt, ##args)
#define log_error(fmt, args...)  log_format(LOG_ERROR_LEVEL, fmt, ##args)
#define log_record(fmt, args...) log_format(LOG_RECORD_LEVEL, fmt, ##args)
#define printf(fmt, args...)  log_format(LOG_PRINT_LEVEL, fmt, ##args)

typedef struct {
    int level;
    char *fmt_str;
}system_print_fmt_t;

system_print_fmt_t system_print_fmt_list[] = {
    { .level = LOG_ERROR_LEVEL,   .fmt_str = ":"},
    { .level = LOG_WARN_LEVEL,    .fmt_str = ":"},
    { .level = LOG_INFO_LEVEL,    .fmt_str = ":"},
    { .level = LOG_DEBUG_LEVEL,   .fmt_str = ":"},
    { .level = LOG_RECORD_LEVEL,  .fmt_str = ":"},
};

int log_format(uint8_t level, const char *fmt, ...)
{
    #define TIME_PREFIX_SIZE (21)
    #define PRINT_MAX_SIZE  (1024 + TIME_PREFIX_SIZE)
    
    va_list args;
    int num = 0, i = 0, fmt_index = 0;
    int fmt_str_len = 0, ret = -1;
    int file_str_len = 0, line_str_len = 0;
    char line_buf[20] = {0};
    static char buf[PRINT_MAX_SIZE];
    static QueueHandle_t sem = NULL;
    time_t time = {0};
    
    /* 针对os系统 */
    if (NULL == sem) {
          sem = xSemaphoreCreateCounting(11); /* always think of success */
    }
    
    xSemaphoreTake(sem, portMAX_DELAY);

    ret = -1;
    fmt_str_len = 0;
    if (level != LOG_PRINT_LEVEL) {
        if ((GET_LOG_LEVEL() < level) && (level != LOG_RECORD_LEVEL) && (level != LOG_ERROR_LEVEL))
            goto exit_end;

        for (i = 0; i < SYSTEM_PRINT_FMT_LIST_MAX; i++) {
            if (level == system_print_fmt_list[i].level) {
                fmt_index = i;
                break;
            }
        }
        if (i > SYSTEM_PRINT_FMT_LIST_MAX) {
            goto exit_end;
        }

        fmt_str_len = strlen(system_print_fmt_list[fmt_index].fmt_str);
        strncpy((char *)&buf[TIME_PREFIX_SIZE], system_print_fmt_list[fmt_index].fmt_str, fmt_str_len);
    }

    va_start(args, fmt);
    num = vsnprintf((char *)&buf[fmt_str_len + TIME_PREFIX_SIZE], PRINT_MAX_SIZE - fmt_str_len - TIME_PREFIX_SIZE - 2, fmt, args);
    va_end(args);

    if (num <= 0) {
        goto exit_end;
    }

    if (level != LOG_PRINT_LEVEL) {
        num += fmt_str_len;
        buf[num + TIME_PREFIX_SIZE] = '\r';
        buf[num + TIME_PREFIX_SIZE + 1] = '\n';
        num += 2;
    }

    if ((GET_LOG_LEVEL() < level) && (level == LOG_ERROR_LEVEL)) {
        //do nothing
    } else {
        ret = bsp_debug_send((uint8_t*)&buf[TIME_PREFIX_SIZE], num); 
    }

    if ((LOG_ERROR_LEVEL == level) || (LOG_RECORD_LEVEL == level)) {
        bsp_rtc_get_time(&time);
        sprintf(&buf[0], "[%04d-%02d-%02d %02d:%02d:%02d",
            time.Year, time.Month, time.Day,time.Hour, time.Minute, time.Second);
        buf[TIME_PREFIX_SIZE - 1] = ']';
        gp_sys_log->system_log.log_latest_time = time;
        system_log_write((uint8_t *)buf, num + TIME_PREFIX_SIZE);
    } 

exit_end:
    xSemaphoreGive(sem);
    return ret;
}

 

结语

本文提供的一种简易嵌入式设备系统日志记录方法,代码量不多,实现简单,针对不同的设备需要合理规划内存使用,根据软件运行状态,合适加入调试信息并保存对应的日志信息,方便开发人员了解系统或软件运行状况,协助开发分析数据资源从而更好完善系统,提高定位以及解决问题的效果。


原文:http://t.csdn.cn/gFDSG

本文系网络转载,版权归原作者所有,如有侵权,请联系删除。





往期推荐

华为一名19级专家离职时留下的7000字|肺腑真言,令人深思!

一个单片机驱动 LCD 的编程思路

校招进大疆了!

如何一步一步成为一个技术领域专家

混说Linux 百度研发工程师,分享Linux干货,和大家一起学习!
评论
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 180浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 174浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦