以GPU为中心的包处理,NVIDIA如何克服DPDK方案限制?

智能计算芯世界 2023-03-26 00:00

本文解释了新的 NVIDIA DOCA GPUNetIO 库如何克服以前 DPDK 解决方案中的一些限制,向以 GPU 为中心的数据包处理应用程序迈进了一步。

下载链接:
NVIDIA GPU架构白皮书
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书
GPU技术专题下载链接
《GPU高性能计算概述》 
《GPU深度学习基础介绍》 
《OpenACC基本介绍》 
《CUDA CC 编程介绍》 
《CUDA Fortr基本介绍》
深度报告:GPU研究框架
CPU和GPU研究框架合集
国产FPGA研究框架
ASIC技术专题分析
《深入介绍FPGA》
《FPGA入门教程》
《异构计算芯片(ASIC/FPGA等)合集(1)》
《异构计算芯片(ASIC/FPGA等)合集(2)》

介绍


网络数据包的实时 GPU 处理是一种适用于几个不同应用领域的技术,包括信号处理、网络安全、信息收集和输入重建。这些应用程序的目标是实现一个内联数据包处理管线(Pipeline),以在 GPU 内存中接收数据包(无需通过 CPU 内存暂存副本);与一个或多个 CUDA 内核并行地处理它们;然后运行推断、评估或通过网络发送计算结果。

通常,在这个管线中,CPU 是协调人,因为它必须使网卡(NIC)接收活动与 GPU 处理同步。一旦 GPU 内存中接收到新的数据包,这将唤醒 CUDA 内核。类似的方法也可以应用于管线的发送侧。

图 1 . 以 CPU 为中心的应用程序, CPU 协调 GPU 和网卡工作

数据平面开发套件(DPDK)框架引入了 goudev 库 来为此类应用提供解决方案:使用 GPU 内存(GPUDirect RDMA 技术)结合低延迟 CPU 同步进行接收或发送。

GPU 发起的通信


从图 1 中可以看出,CPU 是主要瓶颈。它在同步 NIC 和 GPU 任务以及管理多个网络队列方面承担了太多的责任。例如,考虑一个具有多个接收队列和 100 Gbps 传入流量的应用程序。以 CPU 为中心的解决方案将具有:

  • CPU 调用每个接收队列上的网络功能,以使用一个或多个 CPU 核心接收 GPU 存储器中的数据包
  • CPU 收集数据包信息(数据包地址、编号)
  • CPU 向 GPU 通知新接收的数据包
  • GPU 处理数据包

这种以 CPU 为中心的方法是:

  • 资源消耗:为了处理高速率网络吞吐量(100 Gbps 或更高),应用程序可能需要专用整个 CPU 物理核心来接收(和/或发送)数据包
  • 不可扩展:为了与不同的队列并行接收(或发送),应用程序可能需要使用多个 CPU 核心,即使在 CPU 核心的总数可能被限制在较低数量(取决于平台)的系统上也是如此
  • 平台依赖性:低功耗 CPU 上的同一应用程序将降低性能

GPU 内联分组处理应用程序的下一个自然步骤是从关键路径中删除 CPU 。移动到以 GPU 为中心的解决方案,GPU 可以直接与 NIC 交互以接收数据包,因此数据包一到达 GPU 内存,处理就可以开始。同样的方法也适用于发送操作。

GPU 从 CUDA 内核控制 NIC 活动的能力称为 GPU 发起的通信。假设使用 NVIDIA GPU 和 NVIDIA NIC ,则可以将 NIC 寄存器暴露给 GPU 的直接访问。这样,CUDA 内核可以直接配置和更新这些寄存器,以协调发送或接收网络操作,而无需 CPU 的干预。

图 2 . 以 GPU 为中心的应用程序,GPU 控制网卡和数据包处理,无需 CPU

根据定义,DPDK 是 CPU 框架。要启用 GPU 发起的通信,需要在 GPU 上移动整个控制路径,这是不适用的。因此,通过创建新的 NVIDIA DOCA 库来启用此功能。

NVIDIA DOCA GPUNetIO 库


NVIDIA DOCA SDK 是新的 NVIDIA 框架,由驱动程序、库、工具、文档和示例应用程序组成。需要这些资源通过利用 NVIDIA 硬件可以在主机系统和 DPU 上可用的网络、安全性和计算功能来支持应用程序。

NVIDIA DOCA GPUNetIO 是在 NVIDIA DOCA 1.5 版本的基础上开发的一个新库,用于在 DOCA 生态系统中引入 GPU 设备的概念(图 3)。为了促进创建以 DOCA GPU 为中心的实时数据包处理应用程序,DOCA GPUNetIO 结合了 GPUDirect RDMA 用于数据路径加速、智能 GPU 内存管理、CPU 和 GPU 之间的低延迟消息传递技术(通过 GDRCopy 功能)和 GPU 发起的通信。

这使 CUDA 内核能够直接控制 NVIDIA ConnectX 网卡。为了最大化性能, DOCA GPUNetIO 库必须用于 GPUDirect 友好的平台,其中 GPU 和网卡通过专用 PCIe 网桥直接连接。DPU 融合卡就是一个示例,但同样的拓扑也可以在主机系统上实现。

DOCA GPUNetIO 目标是 GPU 数据包处理网络应用程序,使用以太网协议在网络中交换数据包。对于这些应用程序,不需要像基于 RDMA 的应用程序那样,通过 OOB 机制跨对等端进行预同步阶段。也无需假设其他对等端将使用 DOCA GPUNetIO 进行通信,也无需了解拓扑。在未来的版本中,RDMA 选项将被启用以覆盖更多的用例。

DOCA 当前版本中启用的 GPUNetIO 功能包括:

  • GPU 发起的通信: CUDA 内核可以调用 DOCA GPUNetIO 库中的 CUDA device 函数,以指示网卡发送或接收数据包
  • 精确的发送调度:通过 GPU 发起的通信,可以根据用户提供的时间戳来调度未来的数据包传输
  • GPU Direct RDMA :以连续固定大小 GPU 内存步幅接收或发送数据包,无需 CPU 内存暂存副本
  • 信号量:在 CPU 和 GPU 之间或不同 GPU CUDA 内核之间提供标准化的低延迟消息传递协议
  • CPU 对 CUDA 内存的直接访问:CPU 可以在不使用 GPU 内存 API 的情况下修改 GPU 内存缓冲区

图 3 . NVIDIA DOCA GPUNetIO 是一个新的 DOCA 库,需要在同一平台上安装 GPU 和 CUDA 驱动程序和库

如图 4 所示,典型的 DOCA GPUNetIO 应用程序步骤如下:

CPU 上的初始配置阶段:
  • 使用 DOCA 识别和初始化 GPU 设备和网络设备
  • 使用 DOCA GPUNetIO 创建可从 CUDA 内核管理的接收或发送队列
  • 使用 DOCA Flow 确定应在每个接收队列中放置哪种类型的数据包(例如,IP 地址的子集、TCP 或 UDP 协议等)
  • 启动一个或多个 CUDA 内核(执行数据包处理/过滤/分析)

CUDA 内核内 GPU 上的运行时控制和数据路径:
  • 使用 DOCA GPUNetIO CUDA 设备函数发送或接收数据包
  • 使用 DOCA GPUNetIO CUDA 设备函数与信号量交互,以使工作与其他 CUDA 内核或 CPU 同步

图 4 . 由多个构建块组成的通用 GPU 数据包处理管线数据流

以下各节概述了结合 DOCA GPUNetIO 构建块的可能 GPU 数据包处理管线应用程序布局。

CPU 接收和 GPU 处理


第一个示例以 CPU 为中心,不使用 GPU 发起的通信功能。它可以被视为以下章节的基线。CPU 创建可从 CPU 自身管理的接收队列,以接收 GPU 存储器中的数据包,并为每个队列分配流量控制规则。

在运行时,CPU 接收 GPU 存储器中的数据包。它通过 DOCA GPUNetIO 信号量向一个或多个 CUDA 内核通知每个队列新一组数据包的到达,提供 GPU 内存地址和数据包数量等信息。在 GPU 上,CUDA 内核轮询信号量,检测更新并开始处理数据包。

图 5 . GPU 数据包处理管道,CPU 在 GPU 内存中接收数据包,并使用 NVIDIA DOCA GPUNetIO 信号量通知数据包处理 CUDA 内核有关传入数据包

这里,DOCA GPUNetIO 信号量具有类似于 DPDK gpudev communication list 的功能,使得 CPU 接收数据包和 GPU 在处理这些数据包之前等待接收这些数据包之间能够实现低延迟通信机制。信号量还可用于 GPU 在包处理完成时通知 CPU ,或在两个 GPU CUDA 内核之间共享关于已处理包的信息。

该方法可作为性能评估的基准。由于它以 CPU 为中心,因此严重依赖 CPU 型号、功率和内核数量。

GPU 接收和 GPU 处理


上一节中描述的以 CPU 为中心的管线可以通过以 GPU 为中心的方法进行改进,该方法使用 GPU 发起的通信,使用 CUDA 内核管理接收队列。以下部分提供了两个示例:多 CUDA 内核和单 CUDA 内核。

多 CUDA 内核


使用这种方法,至少涉及两个 CUDA 内核,一个专用于接收数据包,另一个专用用于数据包处理。接收器 CUDA 内核可以通过信号量向第二 CUDA 内核提供数据包信息。

图 6 . GPU 数据包处理管线,CPU 在 GPU 内存中接收数据包,并使用 DOCA GPUNetIO 信号量通知数据包处理 CUDA 内核有关传入数据包

这种方法适用于高速网络和延迟敏感的应用程序,因为两个接收操作之间的延迟不会被其他任务延迟。期望将接收器 CUDA 内核的每个 CUDA 块关联到不同的队列,并行地接收来自所有队列的所有数据包。

单 – CUDA 内核


通过使单个 CUDA 内核负责接收和处理数据包,仍然为每个队列专用一个 CUDA 块,可以简化先前的实现。

图 7 . GPU 数据包处理管线,单个 GPU CUDA 内核接收 GPU 内存中的数据包并进行数据包处理

这种方法的一个缺点是每个 CUDA 块两个接收操作之间的延迟。如果数据包处理需要很长时间,应用程序可能无法跟上在高速网络中接收新数据包的速度。

GPU 接收、 GPU 处理和 GPU 发送


到目前为止,大多数关注点都集中在管线的“接收和处理”部分。然而,DOCA GPUNetIO 还可以在 GPU 上生成一些数据,制作数据包并从 CUDA 内核发送,而无需 CPU 干预。图 8 描述了一个完整的接收、处理和发送管线的示例。

图 8 . 具有 GPU CUDA 内核的 GPU 数据包处理管线在 GPU 内存中接收数据包,进行数据包处理,最后制作新数据包

NVIDIA DOCA GPUNetIO 示例应用程序


与任何其他 NVIDIA DOCA 库一样,DOCA GPUNetIO 有一个专用应用程序,用于 API 使用参考和测试系统配置和性能。该应用程序实现了前面描述的管线,提供了不同类型的数据包处理,如 IP 校验和、HTTP 数据包过滤和流量转发。

以下部分概述了应用程序的不同操作模式。报告了一些性能数据,将其视为可能在未来版本中更改和改进的初步结果。使用两个基准系统,一个用于接收数据包,另一个用于发送数据包,背靠背连接(图 9)。

运行 DOCA GPUNetIO 应用程序的接收器是带有 NVIDIA BlueField-2X DPU 融合卡 的 Dell PowerEdge R750 。该配置为嵌入式 CPU 模式,因此应用程序使用 DPU 上的 NVIDIA ConnectX-6 Dx 网卡和 GPU A100X 在主机系统 CPU 上运行。软件配置为 Ubuntu 20.04 、MOFED 5.8 和 CUDA 11.8 。

发送器是 Gigabyte Intel Xeon Gold 6240R ,其通过 PCIe Gen 3 与 NVIDIA ConnectX-6 Dx 连接。此计算机不需要任何 GPU ,因为它运行 T-Rex DPDK packet generator v2.99 。软件配置为 Ubuntu 20.04 和 MOFED 5.8 。

图 9 . 接收器(Dell R750)和发送器(Gigabyte)系统背靠背连接到基准 NVIDIA DOCA GPUNetIO 应用程序

该应用程序也已在 DPU Arm 内核上执行,导致了相同的性能结果,并证明了以 GPU 为中心的解决方案与 CPU 无关。

请注意,DOCA GPUNetIO 最低要求是具有 GPU 和具有直接 PCIe 连接的 NIC 的系统。DPU 并不是严格要求。

IP 校验和, GPU 仅接收


应用程序使用 GPU 发起的通信来创建一个或多个接收队列以接收分数据包。可以使用单 CUDA 内核或多 CUDA 内核模式。

图 10 . NVIDIA DOCA GPUNetIO 应用程序中的第一个管线模式:GPU 接收、计算 IP 校验和并向 CPU 报告

每个数据包都通过简单的 IP 校验和验证进行处理,只有通过此测试的数据包才算作“好数据包”。通过信号量,好数据包的数量被报告给 CPU ,CPU 可以在控制台上打印报告。

通过使用 T-Rex 数据包生成器以约 100 Gbps(约 11.97 Mpps)的速度发送 30 亿个 1 KB 大小的数据包,并在 DOCA GPUNetIO 应用程序侧报告相同数量的数据包以及正确的 IP 校验和,实现了单队列零数据包丢失。相同的配置在 BlueField-2 融合卡上进行了测试,结果相同,证明了 GPU 发起的通信是一个独立于平台的解决方案。

由于数据包大小为 512 字节,T-Rex 数据包生成器无法发送超过 86 Gbps(约 20.9 Mpps)的数据包。即使每秒数据包的数量几乎是两倍,DOCA GPUNetIO 也没有报告任何数据包丢失。

HTTP 过滤, GPU 仅接收


假设一个更复杂的场景,数据包处理 CUDA 内核只过滤具有特定特征的 HTTP 数据包。它将“好数据包”信息复制到第二个 GPU 内存 HTTP 数据包列表中。一旦此 HTTP 数据包列表中的下一个项目充满了数据包,通过专用信号量,过滤 CUDA 内核就会解除第二个 CUDA 内核的阻止,从而对累积的 HTTP 数据包进行一些推断。信号量还可用于向 CPU 线程报告统计信息。

图 11 .  NVIDIA DOCA GPUNetIO 应用程序中的第二种管线模式。GPU 只接收、过滤 HTTP 数据包,并通过专用信号量解除阻止 CUDA 内核对这些数据包进行分析

该管线配置提供了复杂流水线的示例,该复杂管线包括多个数据处理和过滤阶段以及诸如 AI 管线之类的推理功能。

流量转发


本节介绍如何通过 GPU 发起的通信使用 DOCA GPUNetIO 启用流量转发。在每个接收到的数据包中,在通过网络发送回数据包之前,交换 MAC 和 IP 源地址和目的地址。

图 12 . NVIDIA DOCA GPUNetIO 应用程序中的第三种管线模式。GPU 接收、交换每个数据包的 MAC 和 IP 地址,并发送回修改后的数据包。

通过使用 T-Rex 数据包生成器以 ~90 Gbps 的速度发送 30 亿个 1KB 大小的数据包,实现了只有一个接收队列和一个发送队列的零数据包丢失。

用于 5G 的 NVIDIA Aerial SDK


决定采用以 GPU 为中心的解决方案的动机可能是性能和低延迟要求,但也可能是为了提高系统容量。CPU 在处理连接到接收器应用程序的越来越多的对等端时可能成为瓶颈。GPU 提供的高度并行化可以提供可扩展的实现,以并行处理大量对等端,而不会影响性能。

NVIDIA Aerial 是一个用于构建高性能、软件定义的 5G L1 堆栈的 SDK,该堆栈通过 GPU 上的并行处理进行了优化。具体而言,NVIDIA Aero SDK 可用于构建基带单元(BBU)软件,该软件负责通过无线电单元(RU)发送(下行链路)或接收(上行链路)无线客户端数据帧,该数据帧被拆分为多个以太网数据包。

在上行链路中,BBU 接收数据包,验证数据包,并在触发信号处理之前重建每个 RU 的原始数据帧。使用 NVIDIA Aerial SDK ,这在 GPU 中发生:CUDA 内核专用于每个时隙的每个 RU ,以重建帧并触发 GPU 信号处理的 CUDA 内核序列。

通过 DPDK gpudev 库实现了网卡接收数据包以及 GPU 重新排序和处理数据包的编排(图 13)。

图 13 . NVIDIA Aerial 5G L1 以 CPU 为中心的架构,带有 DPDK gpudev 库

第一个实现在现代 Intel x86 系统上仅使用一个 CPU 内核,就能够以 25 Gbps 的速度保持 4 个 RU 的工作速度。然而,随着基站数量的增加,网卡和 GPU 之间的 CPU 功能成为瓶颈。

CPU 按顺序工作。随着单个 CPU 核心接收和管理越来越多的 RU 流量,同一 RU 的两次接收之间的时间取决于 RU 的数量。对于 2 个 CPU 核,每个核在 RU 的子集上工作,相同 RU 的两次接收之间的时间减半。然而,这种方法对于越来越多的客户端是不可扩展的。此外,PCIe 事务的数量从 NIC 增加到 CPU ,然后从 CPU 增加到 GPU (图 14)。

图 14 . NVIDIA Aerial 5G 应用程序以 CPU 为中心的控制流程,连接了多个 RU 。CPU 内核顺序地接收并通知每个连接的 RU 的 GPU 重建内核。这不是一种可扩展的方法。

为了克服所有这些问题,NVIDIA Aerial SDK 的以 GPU 为中心的新版本已通过 DOCA GPUNetIO 库实现。每个 CUDA 内核负责在每个时隙重建来自特定 RU 的数据包,并通过接收能力进行了改进(图 15)。

图 15 . 以 GPU 为中心的 NVIDIA Aerial SDK 5G 架构,采用 NVIDIA DOCA GPUNetIO

此时,关键路径中不需要 CPU ,因为每个 CUDA 内核都是完全独立的,能够并行和实时处理越来越多的 RU 。这增加了系统容量,并减少了每个时隙处理数据包的延迟和 PCIe 事务的数量。CPU 不必与 GPU 通信以提供数据包信息。

图 16 . NVIDIA Aerial 5G SDK 以 GPU 为中心的控制流程,连接了多个 RU 。这是一种可扩展的方法,它保证了对所有连接的平等和公平服务。

根据标准,5G 网络必须根据特定模式交换数据包。每个时隙(例如 500 微秒),数据包应该以 14 个所谓的符号发送。每个符号由若干个数据包组成(取决于使用情况),这些数据包将在较小的时间窗口(例如,36 微秒)内发送。为了在下行链路侧支持这种定时传输模式,NVIDIA Aerial SDK 通过 DOCA GPUNetIO API 将 GPU 发起的通信与精确发送调度相结合。

一旦 GPU 信号处理准备好要在未来时隙中发送的数据,每个 RU 的专用 CUDA 内核将该数据分割成每个 RU 的以太网数据包,并在未来的特定时间调度它们的未来传输。然后,同一 CUDA 内核将数据包推送到 NIC ,NIC 将负责在正确的时间发送每个数据包(图 17)。

图 17 .  NVIDIA Aerial 5G SDK 定时传输模式使用 GPU 发起的通信和精确发送调度功能,通过 NVIDIA DOCA GPUNetIO 实现

尽早访问 NVIDIA DOCA GPUNetIO


作为研究项目的一部分,DOCA GPUNetIO 包处于实验状态。它可以早期访问,是最新 DOCA 版本的扩展。它可以安装在主机系统或 DPU 融合卡上,包括:

  • 应用程序初始设置阶段的一组 CPU 函数,用于准备环境并创建队列和其他对象
  • 您可以在 CUDA 内核中调用一组特定于 GPU 的函数,以发送或接收数据包,并与 DOCA GPUNetIO 信号量交互
  • 您可以构建和运行应用程序源代码来测试功能,并了解如何使用 DOCA GPUNetIO API

硬件要求是 ConnectX-6 Dx 或更新的网卡和 GPU Volta 或更新的。强烈建议在两者之间使用专用 PCIe 网桥。软件要求为 Ubuntu 20.04 或更新版本、CUDA 11.7 或更新版本以及 MOFED 5.8 或更新版本。


下载链接:

《算力时代关键技术报告汇总》

1、算力感知网络CAN技术白皮书

2、算力时代的全光底座白皮书
3、算力时代网络运力研究报告(2022)
2022 OCP全球峰会:服务器系列(1)
2022 OCP全球峰会:服务器系列(2)
2022 OCP全球峰会:服务器系列(3)
2022 OCP全球峰会:服务器系列(4)
2022 OCP全球峰会:服务器系列(5)
2022 OCP全球峰会:服务器系列(6)
Hyperion Research:SC22 HPC Market Update(2022.11)
Hyperion Research:ISC22 Market Update(2022.5)
Intersect360全球HPC-AI市场报告(2022—2026)
Intersect360 AMD CPU和GPU调研白皮书
EDA专题报告:行业快速发展,国产替代前景可期(2022)
2022年信创厂商全景报告
2021年信创产业发展报告
2020信创发展研究报告
信创研究框架
信创产业系列专题(总篇)
2021年中国信创生态研究报告
中国信创产业发展白皮书(2021)
从端到云:基于飞腾平台的全栈解决方案白皮书
芯片设计云技术白皮书2.0
信创行业专题:突破核心技术,信创扬帆起航(2021)
2021年信创产业发展报告
2020信创发展研究报告
信创研究框架
信创产业系列专题(总篇)
2021年中国信创生态研究报告
中国信创产业发展白皮书(2021)
龙芯LoongArch指令集全集
信创研究专题框架
1、2020信创发展研究报告 
2、中国信创产业发展白皮书(2021) 
3、信创研究框架 
4、云计算行业:新基建和信创云计算进阶 
5、深度研究:云计算与信创产业持续快速发展 
6、深度:信创产业系列专题(总篇) 
7、计算机研究:信创和鲲鹏计算产业链


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。



免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。

电子书<服务器基础知识全解(终极版)>更新完毕。
获取方式:点击“小程序链接”即可查看182页 PPT可编辑版本和PDF阅读版本详情。

服务器基础知识全解PPT(终极版)

服务器基础知识全解PDF(终极版)


温馨提示:
请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 89浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 140浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 181浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 148浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 108浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 171浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 174浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 107浏览
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 145浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 196浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 82浏览
×
广告
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦