基于激光雷达强度信息的实时SLAM方案

智享新汽车 2023-03-26 00:00
 

摘要


本文提出了一种新颖的基于LiDAR强度图像的实时定位和地图构建方法,解决了在非结构化环境中几何退化问题,传统基于LiDAR的前端里程计大多依赖于点、线和平面等几何特征,如果环境中缺乏这些特征,则整个里程计系统可能会失效,为避免这个问题,我们从LiDAR生成的点云中提取特征点,并将其与在LiDAR强度图像中识别出的特征相匹配,然后使用提取的特征点执行扫描点云的配准并估计机器人的自我运动,对于后端,我们联合优化相应特征点之间的距离以及地图中识别出的平面的点到平面的距离,此外利用从强度图像中提取的特征来检测来自先前扫描点云的回环闭合候选,并执行位姿图优化。实验表明,该方法可以在实时环境下高精度运行,并且可以很好地应对光照变化、低纹理和非结构化环境。

图1:两次连续扫描点云之间匹配的3D点及其对应的特征点,图(b)中的点是根据(a)中匹配特征的索引从点云中提取的3D点,红色点表示上一帧的匹配点,绿色点表示当前扫描的匹配点,这些点随后用于扫描配准,以估计两个连续帧之间的相对姿态。

主要贡献



提出了一种基于LiDAR强度SLAM方法,直接从强度图像中提取特征点并执行扫描点云配准来估计机器人的自我运动,主要贡献包括:

  •  一种新颖的基于LiDAR强度图像的实时SLAM系统,旨在解决几何退化问题; 

  • 将视觉SLAM系统的优点与LiDAR SLAM系统相结合,避免模糊或光照变化的影响; 

  •  由于特征点较少,并在后端加入地面平面约束和LiDAR Bundle Adjustment(BA),因此具有轻量级的前端;

  • 基于强度的回环闭合检测和位姿图优化。

主要内容



本文提出的方法的流程如图2所示,在我们的系统中,LiDAR会在100毫秒内生成一个点云,称为帧或扫描,为了估计机器人的运动,我们需要计算相邻帧之间的相对姿态,在前端使用强度里程计来实现这个过程,此外,使用术语“里程计”来描述当前帧和初始帧之间的相对姿态,前端的里程计通常不准确,因此我们需要使用后端来优化里程计,在后端使用扫描到地图的优化方法和LiDAR BA 来校正漂移,然而,地图优化通常不能完全消除积累的漂移,因此我们增加了回环闭合检测作为另一种降低漂移的手段,在我们的情况下,在LiDAR强度图像上执行回环闭合检测,并使用姿态图优化来更新轨迹并生成机器人的最终轨迹。

图2:所提出方法的系统概述,整个系统由三部分组成,包括强度里程计,地图优化和姿态图优化,强度里程计部分是该方法的核心,它由强度图像生成,特征跟踪和扫描配准组成,地图优化通过共同最小化LiDAR BA残差和点到地图平面残差来纠正漂移,位姿图优化通过添加回环约束来纠正整个轨迹。

A. 强度里程计

假设有来自激光雷达的两个连续点云帧X和Y,直接估计相对位姿的一种方法是将迭代最近点(ICP)算法直接应用于计算旋转矩阵R和T:

然而,这种方法通常需要消耗大量的时间和计算资源 ,为了降低计算成本,我们需要提取用于扫描数据的配准的代表性点,从而减少用于优化的点的数量,为了减少用于优化的点的数量,Zhang等人尝试提取边缘和平面特征,当前帧的边缘特征点可以与地图中的边缘匹配,平面特征也是如此。通过边缘和平面特征,可以联合优化点到线的距离和点到平面的距离,并估计 R 和 T,然而,在一些场景中,例如长廊或洞穴环境中,我们无法提取足够的边缘特征,在这种情况下,我们将失去估计6自由度位姿的能力。

为了解决这个问题,我们直接从强度图像中提取和跟踪特征,图1a显示了从Ouster-64 LiDAR生成的强度图像,图像分辨率为1024×64,即使垂直分辨率较低,我们仍然可以提取足够的特征(红色和绿色圆圈是ORB特征),用于估计运动,根据强度图像上匹配特征点的索引直接从点云中提取3D点Y2 ,每个3D特征点都被分配一个得分S,这个得分是在特征提取期间获得的,同样,我们可以提取以下扫描中对应的点X2,并将其作为最小二乘估计问题进行扫描匹配:

B. 地图优化

LiDAR 强度测距法生成了一个转换矩阵,该矩阵描述了相邻帧之间的相对姿态:

在当前传感器坐标系和地图坐标系之间,我们生成了一个变换矩阵,在这个模块中,我们共同优化扫描到地图的残差和激光雷达BA(Bundle Adjustment)残差来校正姿态漂移。

激光雷达BA:类似于视觉SLAM BA,可以使用激光雷达BA(一种非线性优化问题)来校正漂移,使用这种策略,最后k帧用于残差函数中,如果帧数大于k,则删除最旧的帧,并将最新的帧添加到滑动窗口中,如图3所示。

图3:用于LiDAR BA(顶部)和带有闭环约束的姿态图(底部)的滑动窗口策略的说明

C. 位姿图优化 

在地图优化期间,可以获得更好的当前帧姿态估计,一旦完成,使用优化结果来纠正未来帧的漂移,并实时发布高频率优化的里程计,在后端,基于LiDAR关键帧构建位姿图,首先使用三个标准从整个LiDAR帧中提取关键帧: 

  • •当前帧和上一个关键帧之间的距离大于一个阈值。 

  • •两个关键帧之间的角度大于一个阈值。 

  • 匹配特征点的数量小于一个阈值。 

将关键帧的优化姿态作为姿态图的顶点,将两个关键帧之间的相对姿态作为姿态图的边,还向姿态图添加回环约束,如图3所示,我们将最新的关键帧用作锚点帧,使用训练好的词汇表,可以将当前关键帧的描述子与存储历史描述子的数据库进行比较,如果无法将其与历史描述子匹配,则没有找到此关键帧的回环,如果我们成功匹配了以前的关键帧,则可以将其放入异常值剔除程序中,以测试是否存在错误的回环,如果是正确的,则可以在姿态图中的当前因子节点和回环候选因子节点之间添加此回环约束,最后,我们使用g2o 来解决位姿图优化问题。

实验



为了证明我们算法的可靠性,我们在长走廊的室内环境、多层室内环境、山区和街道环境中进行了实验(见图9b),我们选择这些环境的原因是它们彼此不同,对于纯激光雷达SLAM来说都是具有挑战性的,在室内环境中,有长走廊和狭窄的通道,在山区环境中,我们有陡峭的坡和狭窄的通道,在街道环境中,有许多障碍和许多转弯,这些情况对于纯激光雷达SLAM来说都很困难。


在这个实验中,将我们的方法与另外两个流行的纯激光雷达SLAM系统LeGO-LOAM和A-LOAM进行了比较,我们的基于强度的SLAM系统在不同环境下都表现出竞争力,包括室内、室外和一些极端场景,比如长走廊,大多数其他激光雷达SLAM系统在这样极端的、边缘特征更少的环境中都会失败。我们首先使用Shan等人提供的一个公共数据集进行了测试,该数据集使用Ouster OS1-128 LiDAR收集,我们将LIO-SAM的轨迹视为地面真值,因为它是基于激光雷达、9轴IMU和GPU估算的,比仅使用激光雷达的SLAM精度更高。

图4:多种环境下的轨迹结果。实验结果证明我们的方法能够在各种情况下精确估计位置,LeGO-LOAM算法在平坦环境中表现良好,但在有坡度的环境中表现不佳。

在图4中,我们展示了我们的方法、LeGO-LOAM和A-LOAM在各种地形中的轨迹,而图5则显示了图4相应的绝对位置误差(APE)。

图5:在多个环境中的绝对位姿误差,我们方法的APE在所有场景中都是最小的,其次是A-LOAM。

从图5可以看出,我们的方法的APE显著低于其他方法,除了图5a的情况,我们的结果与A-LOAM相比不具有显著优势,图4和图5的结果证明了我们提出的方法在与A-LOAM和LeGO-LOAM相比具有竞争力的结果,特别是在图4d中,轨迹在最后一段接近地面真值轨迹,而其他方法漂移很大。


我们还使用装备有Ouster Os0-64激光雷达的Spot机器人在室内进行了算法测试,这个实验场景主要包括与图9b相同的长廊,在这个场景中,我们运行不同的算法来测试在实际环境中的定位和地图构建能力。

图6:在一个拥有长走廊的建筑物内的Spot机器人的地图和轨迹。在这个场景中,沿着走廊走回起点,在这个实验中,LeGO-LOAM的漂移相对较大,而A-LOAM的表现接近于我们的方法,但是从这两个图中无法确定哪种方法更好。

图7:这次实验我们不是围绕圆圈回到起点,而是来回穿过所有的走廊,然后返回起点。这种情况是极端的,因为在俯仰方向上没有好的回环来纠正漂移,实验结果显示,LeGO-LOAM的漂移比前一个场景更大,A-LOAM和我们的方法几乎相同。

图6a和图7a都是我们的算法生成的地图,图6b和图7b展示了不同算法在相应环境中的轨迹,从轨迹可以看出,LeGO-LOAM漂移很大,A-LOAM和我们的轨迹几乎相同,由于是室内环境,我们很难使用RTK收集地面真实轨迹,因此我们尝试通过分析地图细节(图8)来评估算法的优点和缺点。

图8:我们的方法和A-LOAM在长走廊中的差异。可以看出,我们的方法生成的地图与起始位置平滑连接,而A-LOAM生成的地图在末尾有明显的断裂

图8a展示了图6a的前视图,图8b也是A-LOAM生成的同一场景的前视图,我们可以看到,我们的方法可以平滑地连接行程结束时的起点,而A-LOAM的地图则是不连续的,在这一点上,我们可以说我们的方法在这种极端环境下更加可靠。此外,我们分析了在使用Os0-64 LiDAR采集的相同数据上,在Intel处理器上运行不同SLAM算法的时间消耗,表I显示,我们基于强度的前端能够在15毫秒内计算里程计,我们的方法足够高效以满足10 Hz激光雷达的实时要求。

总结


在本文中,我们提出了一种新颖的基于强度的纯LiDAR SLAM方法,我们首先提出了一种新颖的轻量级基于强度的里程计方法,该方法直接匹配从强度图像中提取的3D特征点,然后我们提出了一种新颖的地图优化方法,它联合优化了LiDAR BA和点对平面残差,最后,我们提出了一种新颖的基于强度图像的位姿图优化方法,可以基于强度图像优化位姿图,在室内和室外环境中测试了我们的方法,结果证明,与其他流行的纯LiDAR SLAM方法相比,我们的方法可以取得竞争性的结果。在未来,我们将通过使用更先进的特征提取方法和回环闭合检测方法进一步改进我们的方法。


这篇文章的代码实现可以参考 基于成像激光雷达的鲁棒位置识别

文章:Robust Place Recognition using an Imaging Lidar

作者:Tixiao Shan, Brendan Englot, Fabio Duarte, Carlo Ratti, and Daniela Rus

开源代码:https://github.com/TixiaoShan/imaging_lidar_place_recognition


更多详细内容请加入 

智享新汽车 汽车新四化专业资讯及干货分享平台
评论
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 615浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 465浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 241浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 350浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 473浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 194浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 323浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1229浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 494浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 189浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 293浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦