基于MATLAB的静态手势识别系统(猪脑子进化了)

原创 云深之无迹 2023-03-25 22:35

给大家展示一下如何使用ChatGPT和一个优秀的猪脑子写一篇论文。别问为什么是这个题目,问就是金主爸爸说的。

因为这个文章在最后会被直接使用,这里就把文章的水印功能先关闭。

这个算一个简单的视觉项目,为了UI界面编写的易用性(主要是我就会用ML写)和金主爸爸的要求。

本来按照我平时的路数是要多看几篇好文章动手的,但是时间紧迫,就先一把梭哈了,不看了!

图像处理的话,这个的难点在识别,其实前面的部分叫计算机视觉,后面的部分叫机器视觉,不过很多人也不分。

识别部分主要是传统的方案和现代的神经网络方案,这次选用前者,使用图像的矩特征来分类。

对我而言,视觉就是堆积木,是标准的流程,是共识。

这个是这次大致的项目流程

整个流程就是预处理,中解算,后特征提取和匹配,为了更好的说明算法的有用性,这里也使用了UI的工具,显得更加的牛逼。

直接说干货不太好,说点废话!

人机交互技术也得到了快速发展;人机交5(Human-ComputerInteraction,HCI)是人类与电脑、机器之间的信息交换和交互的技术,是人类和电脑之间的一种桥梁。人类与人之间的互动从世界上首部电脑 ENIAC诞生以来,为了让人类更好地使用电脑,更有效地处理资讯,人类开始寻求更好的方法来进行人机互动。1964年,随着鼠标的产生,出现了图形用户界面(GraphicalUserInterface,GUI),键盘的诞生又将人机交互的方式推入到字符用户界面时代;随着笔式交互、触摸、语音及基于视频等自然交互设备的出现,人机交互进入了普适计算(PervasiveComputing)时代,自然交互是其研究的重要主题,自然人机交互技术是指能够利用人类自然地认知、感知能力和人类行为习惯的方法。

简而言之,言而总之,这就是个人机交互的好东西~

我们知道论文的前半部分的最后是要给出你研究课题的研究目标的,这个适合使用ChatGPT是最好的!

舒服了

但是我们没有使用神经网络算法,所以需要继续调教:

还是可以看到一些关键字

这样就好很多了

但是鄙人有点完美主义,我们重新的来调整:

到目前为止,这个就很好了

对大语言模型来说,前面的内容应该尽量的偏大框架,后面的调整先做减法,再做加法。

全程使用的软件就是ML2022A,现在有2023了,对TI的C2000有大支持,其实对我来说也然并卵。

我这里使用的版本是2022

打开ML,设计APP

我以前有个UI的,直接使用但是后面ML的UI工具更新了,这里直接转换

开启这个对齐功能

放大这些边边角角

全部对齐

多用空格按键,平移整个框图

包括按钮也是一样的

然后这里也会对外观这些可以进行细微的调节

图像显示框要全部搞到容器里面

右面是整个的组件树

其实在UI系统里面,触发和回调就是全部,触发简单,就是什么事情发生了,接着就是回调,一般意思是把函数当参数传递,但是更加广义的回调应该是有点中断的味道,就是触发了一个实体以后发生了什么,回调本身其实就是发生了什么。

所以按钮和回调进行一个绑定,就是摁下按钮以后会怎么样?

我们的论文基于此,说明了所有的回调函数,就完成了所有的工作。

注意要看会响应什么类型的回调

这里就是回调的值

多说无益上代码

这个函数就是实现了最装B的部分,实时的在一个框里面输出视频流。

再看,我们处理的是一帧图像:

可以使用这个函数,获取几帧图像

默认是10,double

然后图像可以使用多种格式储存,我这里设置为RGB,其实YCbCr才好

set(H,Name,Value) 为 H 标识的对象指定其 Name 属性的值。使用时须用单引号将属性名引起来,例如,set(H,'Color','red')。如果 H 是对象的向量,则 set 会为所有对象设置属性。如果 H 为空(即 []),set 不执行任何操作,但不返回错误或警告。

把图像送到坐标区域,就是上面的窗口

不难吧?    

上面这些操作只是说先显示了一帧而已,接下来是更多的图像。

先查询视频流的分辨率

接着要给出颜色的空间

接着按照实际的分辨率来把图像生成

直接显示

其实别觉得难,程序就是关注数据和状态罢了,数据在你手中被重构。

ML的优点就在于帮助文档太好了

这个是没有修改前

修改后

第二个函数就更简单了,从视频流里面获取一帧

重点看最好一个函数,倒数第二个函数其实已经完成了使命,但是我们后面处理的数据从哪里来?就是这个函数,图像存到pic这个东西里面。

事实上,我还搞了一个可以读取已经有的图片的功能。

代码也是简单的一笔:

看见了没有,pic就是我们要处理的最终图像,读出来的图像进行缩放,为了提高计算效率,然后在第二个图床上面显示。

接着就是我们要把图像分割出来,事实上我们需要很多的理论知识说明这些,但是好在matlab帮我们都封装好了。

完成一个任务是有不同的算法的选择,我们可以使用下拉框来完成。

就像这样

值必须要是下面items里面的

我们使用的就是这个

直接拿到上面传到的图像,下面是取出下来列表的值

如果是阈值分割算法,先转灰度,接着就是局部增强,这个函数不是内置的,需要自己来写:

图像增强(Image Enhancement)其实是一个很宽泛的定义,简单来说就是对数字图像进行调整(adjusting)以使图像更适合于显示或后期的图像分析。

图像增强的原因总结有以下几点:

(1)图像细节不清晰

(2)光照不均匀导致图像亮度分布不均匀

(3)图像对比度较差

(4)成像过程中原始图像受噪声污染

(5)感兴趣区域(Region of Interest)不明显

(6)人眼视觉特性

对于现在有的增强方法是从空间域和变换域说的:


变换方法分类

在图像的小区域细节中,像素数在全局变换的计算中可能被忽略,因为它们没有必要确保局部增强。解决的办法就是在图像中每一个像素的邻域中,根据灰度级分布(或者其他特性)设计变换函数。

以前描述的直方图处理技术很容易适应局部增强,该过程定义一个方形或矩形的邻域并把该区域的中心从一像素移至另一像素。在每个位置的邻域中该点的直方图都要被计算,并且得到的不是直方图均衡化就是规定化变换函数。这个函数最终被用来映射邻域中心像素的灰度。相邻区域的中心然后被移至相邻像素位置并重复这个处理过程。当对某区域进行逐像素转移时,由于只有邻域中新的一行或一列改变,所以可以在每一步移动中,以新数据更新前一个位置获得的直方图。这种方法相比邻域每移动一个像素就对基于所有像素的直方图进行计算,有明显的优点。有时使用非重叠区域是减少计算量的另一种方法。但是这种方法通常会出现不希望的棋盘效果。

分别是源相,全局均衡化,7x7邻域均衡化

这里使用利用直方图统计量来增强局部图像,所以用的原理公式详见冈萨雷斯《数字图像处理》第四版。

公式的意思是定义一个3x3的领域,平均局部灰度和局部标准差在一定的范围内时,像素乘上C,来增强图像下部分的灰度值,否则就不变。

下面是知乎老哥的,直接梭哈了!

首先我们要将对比度低区域找出来,怎么找呢?我们需要一个比较!我们知道方差体现了一个区域内数值的差距大小,若该区域亮度值相等,则方差为0,而对比度较低区域的方差通常也很小。我们用前面设置的3x3邻域遍历整张图片的每一个像素值,每一次都求一次方差和均值。

注:红色框是左上角方块中隐藏图案;黄色框是该邻域未接近隐藏图案;蓝色框是邻域进入隐藏图案
我们先算出红色框的均值和标准差分别为:35.4,5.5。再算出蓝色框的均值和方差:39.9,4.4。随着邻域进入隐藏图案,方差也会越来越小,我们是否可以用刚进入邻域的方差作为一个阈值呢?只有当该点(c,d)邻域方差小于这个阈值时,我们才提高该点(c,d)的亮度。因此我们k3,即方差最大值可以选择(4.4/原图标准差)。因此,在我们进行遍历的时候,均值在进入区域也会变大。如果方差小于k3时,我们就要将该点像素提高。如何提高呢?这就是系数C的作用了。k2的取值通常为0,因为因此图案中也有方差为0的地方。
系数C的定义就是(max(原图) / max(邻域)),目的就是提高对比度低区域(隐藏图案)的亮度。假设原图最高亮度是200,该邻域最高亮度为20,则200/20=10,我们乘10后,隐藏图案该像素值就会变亮,但不会超过全图最高亮度。
这样我们能够找到对比度较低的地方并处理,但是均值是干嘛的呢?

左边对应原图中的白色区域,右图对应原图黑色区域

我们可以看到无论白色还是黑色区域,区域内亮度值基本相同,如果用方差判断的话他们也会被认定为低对比度区域。但是我们通过求两部分均值:230,32。再跟前面的均值对比,发现不是比目标区域的低就是高。因此我们可以通过均值大小来更加精准的来判断是否为隐藏图像区域。只有均值和方差均满足条件时,才提高亮度。那么k1上线应该选择(隐藏区域最大均值/原图均值)。下限k0通常选择(隐藏区域边界最小均值/原图均值)。这样我们就过滤了黑色和白色区域。
通过上述公式,遍历整张图片,仅改变隐藏图案亮度,我们就会得到处理后的图片。

我们传入的就是一个图像,E就是上面说的增强系数C,平均值什么的直接就计算了。

整个判断过程

真实对图像起作用的地方

接着再滤波,其实这里我觉得是没有必要的,因为增强了再滤波信息又没了

不过为了堆算法就再处理一下,如果是搞项目,整个是不可取的,这不二逼行为么、、、

中值滤波是一种平滑技术,与线性高斯滤波一样。所有的平滑技术都能有效去除信号光滑区域或平滑区域的噪声,但对边缘产生不利影响。通常,在减少信号中的噪声的同时,保持边缘是重要的。例如,边缘对于图像的视觉外观是至关重要的。对于(高斯)噪声的小至中等水平,中值滤波器在消除噪声方面明显好于高斯模糊,同时为给定的固定窗口大小保留边缘。然而,对于高噪声,其性能并不比高斯模糊好,而对于散斑噪声和椒盐噪声(冲动噪音),这是特别有效的。因此,中值滤波在数字图像处理中被广泛使用。
设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上面的计算过程。

背景复杂的情况下还有肤色分割

平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。

两个函数搭配起来使用。

色彩空间的转换

RGB:R:red(红色通道);G:green(绿色通道);B:blue(蓝色通道),三种颜色的叠加可以得到人类视力所能感知的所有颜色。
YCBCR:Y表示颜色的明亮度和浓度,也可叫灰度阶。(通过RGB转换YCBCR提取Y分量也可以得到灰度图像)
Cb:表示颜色的蓝色浓度偏移量即RGB输入信号蓝色部分与RGB信号亮度值之间的差异。
Cr:表示颜色的红色浓度偏移量即RGB输入信号红色部分与RGB信号亮度值之间的差异。
二者转换,可以将亮度和色度分离开,更直白的看到自己所需要图像。
二者相互转换公式:
1、RGB转YCBCR
Y=0.257*R+0.564*G+0.098*B+16 Cb=-0.148*R-0.291*G+0.439*B+128 Cr=0.439*R-0.368*G-0.071*B+128
2、YCBCR转RGB
R=1.164*(Y-16)+1.596*(Cr-128) G=1.164*(Y-16)-0.392*(Cb-128)-0.813*(Cr-128) B=1.164*(Y-16)+2.017*(Cb-128)

然后使用find找到index

在颜色里面用集合算区域,然后把区域二值化出来,完成分割。

然后我们看降噪函数

害,ML的编辑器太丑了,我换vscode了

首先我们现在有的图像是一个有一些小窟窿的二值图像,使用这个函数来抠图

给一个要填眼的范围,然后下面就给镶个边

strel 对象表示一个平面形态学结构元素,该元素是形态学膨胀和腐蚀运算的重要部分。
平面结构元素是一个二维或多维的二值邻域,其中 true 像素包括在形态学运算中,false 像素不包括在内。结构元素的中心像素称为原点,用于标识图像中正在处理的像素。使用 strel 函数(如下所述)创建一个平面结构元素。

就这

绘制出来就是这样的

执行一下开运算

执行前

执行后

然后再执行上面的操作,最后再滤波一下。

然后就整个降噪也是说完了。

然后说这个获得图像边缘:

一次可以按照上面的写法集成多个算子

来使用Python展示一下这些二值化提取边缘函数的效果:

代码在最后

自带美女

其中,Laplacian算子对噪声比较敏感,由于其算法可能会出现双像素边界,常用来判断边缘像素位于图像的明区或暗区,很少用于边缘检测;Robert算子对陡峭的低噪声图像效果较好,尤其是边缘正负45度较多的图像,但定位准确率较差;Prewitt算子对灰度渐变的图像边缘提取效果较好,而没有考虑相邻点的距离远近对当前像素点的影响;Sobel算子考虑了综合因素,对噪声较多的图像处理效果更好。

自己选吧,我近视眼感觉都差不多。

接着上面的函数继续:

接着我们给它加一个最小的矩形

这太成熟了。。。直接搞现成的代码就好。

这个函数可以求二值图像最小外接矩形(a:面积最小;p:周长最小) 斜矩形

大概的一个效果

除了这个绘制线框以外,还有两个线条

情况就是三个

我们接下来说下一下图像的特征这个事情,无论从前还是现在的神经网络的什么东西,关注的都是图像的特征,这种特征是不随外面的变化而变化的,更多的是哲学上面的性质:

我们用傅里叶描述子和Hu矩来说明这个

傅里叶描述子是一种图像特征,具体来说,是一个用来描述轮廓的特征参数。其基本思想是用物体边界信息的傅里叶变换作为形状特征,将轮廓特征从空间域变换到频域内,,提取频域信息作为图像的特征向量。即用一个向量代表一个轮廓,将轮廓数字化,从而能更好地区分不同的轮廓,进而达到识别物体的目的。

冈萨雷斯的《数字图象处理》

总结:傅立叶描述子可以很好地描述轮廓特征,并且只需少量的描述子(即向量中的数不需要太多)即可大致代表整个轮廓。其次,对傅立叶描述字进行简单的归一化操作后,即可使描述子具有平移、旋转、尺度不变性,即不受轮廓在图像中的位置、角度及轮廓的缩放等影响,是一个鲁棒性较好的图像特征。

看最后图的两个的样子

比较两个轮廓最简单的方法是比较二者的轮廓矩,轮廓矩代表了一个轮廓,一副图像,一组点集的全局特征,矩信息包含了对应对象不同类型的集合特征,例如大小,位置,角度,形状等。

Hu矩是归一化中心矩的线性组合,Hu矩再图像旋转,缩放,平移等操作后,仍能保持矩的不变性,经常使用 Hu 矩来识别图像的特征。

我们要单独的构建一个函数

等下再说这个,我们再贴一下Hu的实现:

5,6,7后面还有很长的公式就不放了

直接使用现成的函数来求解

使用的函数是这个

别问太多的原理,我研究透了肯定会写,现在能快速实现最重要,毕竟我快饿死了。

矩是一个数学的概念

根据矩的定义,二维图像的灰度用f(x,y)表示,零阶矩m00表示为:

表示的是图像灰度的总和

图像的一阶矩m10和m01表示用来确定图像的灰度中心,

根据中心矩的定义很容易计算出,u10=0,u01=0

算球算,直接写

二阶矩有三个,m11 m02 m20,也成为惯性矩。它们可以确定物体的几个特性: 

1.二阶中心矩用来确定目标物体的主轴,长轴和短轴分别对应最大和最小的二阶中心矩。可以计算主轴方向角。 

2.图像椭圆:由一阶、二阶矩可以确定一个与原图像惯性等价的图像椭圆。所谓图像椭圆是一个与原图像的二阶矩及原图像的灰度总和均相等的均匀椭圆。使得主轴与图像的主轴方向重合,一边分析图像性质。

对于三阶或三阶以上矩,使用图像在轴或轴上的投影比使用图像本身的描述更方便。 三阶矩:投影扭曲,描述了图像投影的扭曲程度。扭曲是一个经典统计量,用来衡量关于均值对称分布的偏差程度。 四阶矩:投影峰度,峰度是一个用来测量分布峰度的经典统计量。可以计算峰度系数。当峰度系数为0时,表示高斯分布;当峰度系数小于0时,表示平坦的少峰分布;当峰度系数大于0时,表示狭窄的多峰分布。
图像的hu矩是一种具有平移、旋转和尺度不变性的图像特征。
普通矩的计算: (对上面的普通矩阵进行总结)f(x,y)的p+q阶原点矩可以表示为:


而数字图像是一个二维的离散信号,对上述公式进行离散化之后:

C,R,行列

各种矩的物理意思:

普通矩:0阶矩(m00):目标区域的质量 
1阶矩(m01,m10):目标区域的质心 
2阶矩(m02,m11,m20):目标区域的旋转半径 
3阶矩(m03,m12,m21,m30):目标区域的方位和斜度,反应目标的扭曲
但是目标区域往往伴随着空间变换(平移,尺度,旋转),所以需要在普通矩的基础上构造出具备不变性的矩组—hu矩。
中心矩:构造平移不变性 由零阶原点矩和一阶原点矩,我们可以求得目标区域的质心坐标:

由求得的质心坐标,我们可以构造出中心矩:

由于我们选择了以目标区域的质心为中心构建中心矩,那么矩的计算时永远是目标区域中的点相对于目标区域的质心,而与目标区域的位置无关,及具备了平移不变性。

归一化中心矩:构造尺度不变性
为抵消尺度变化对中心矩的影响,利用零阶中心矩u00对各阶中心距进行归一化处理,得到归一化中心矩:
由上文可知,零阶矩表示目标区域的质量(面积),那么如果目标区域的尺度发生变化(缩小2倍),显然其零阶中心矩也会相应变小,使得矩具备尺度不变性。

Hu矩:构造旋转不变性 
利用二阶和三阶规格中心矩可以导出下面7个不变矩组(Φ1 Φ7),它们在图像平移、旋转和比例变化时保持不变。 

按照分析记得代码的归一化

然后把特征值写到数组里面

通过找到上面的区域,显示上去

最后一步了,查找特征值有没有,如果没有就msgbox弹出

data文件是提前算好的数据

算好的,已有的,这明显就是一个距离的问题:

我们使用豪斯多夫距离



代码在最后

循环的从中取出距离来对比就给出了结果

至于代码,不准备开源,有需要的来买。

https://blog.csdn.net/weixin_46118768/article/details/119866798
function [mhd] = ModHausdorffDist(A, B)    Asize = size(A);    Bsize = size(B);
% Check if the points have the same dimensions if Asize(2) ~= Bsize(2) msgbox('两个集合的维数不同,请统一!', '提示'); else % Calculating the forward HD fhd = 0; % Initialize forward distance to 0
for a = 1:Asize(1) % Travel the set A to find avg of d(A,B) mindist = Inf; % Initialize minimum distance to Inf
for b = 1:Bsize(1) % Travel set B to find the min(d(a,B)) tempdist = norm(A(a, :) - B(b, :));
if tempdist < mindist mindist = tempdist; end
end
fhd = fhd + mindist; % Sum the forward distances end
fhd = fhd / Asize(1); % Divide by the total no to get average % Calculating the reverse HD rhd = 0; % Initialize reverse distance to 0
for b = 1:Bsize(1) % Travel the set B to find avg of d(B,A) mindist = Inf; % Initialize minimum distance to Inf
for a = 1:Asize(1) % Travel set A to find the min(d(b,A)) tempdist = norm(A(a, :) - B(b, :));
if tempdist < mindist mindist = tempdist; end
end
rhd = rhd + mindist; % Sum the reverse distances end
rhd = rhd / Bsize(1); % Divide by the total no. to get average mhd = max(fhd, rhd); % Find the minimum of fhd/rhd as % the mod hausdorff dist end
end
原文链接:https://blog.csdn.net/devcloud/article/details/126764789
# -*- coding: utf-8 -*-import cv2import numpy as npimport matplotlib.pyplot as plt
# 读取图像grayImage = cv2.imread('./222.png', cv2.IMREAD_GRAYSCALE)
# 高斯滤波gaussianBlur = cv2.GaussianBlur(grayImage, (3, 3), 0)
# 阈值处理ret, binary = cv2.threshold(gaussianBlur, 68, 255, 0)
# Roberts算子kernelx = np.array([[-1, 0], [0, 1]], dtype=int)kernely = np.array([[0, -1], [1, 0]], dtype=int)x = cv2.filter2D(binary, cv2.CV_16S, kernelx)y = cv2.filter2D(binary, cv2.CV_16S, kernely)absX = cv2.convertScaleAbs(x)absY = cv2.convertScaleAbs(y)Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
# Prewitt算子kernelx = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int)kernely = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]], dtype=int)x = cv2.filter2D(binary, cv2.CV_16S, kernelx)y = cv2.filter2D(binary, cv2.CV_16S, kernely)absX = cv2.convertScaleAbs(x)absY = cv2.convertScaleAbs(y)Prewitt = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
# Sobel算子x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)absX = cv2.convertScaleAbs(x)absY = cv2.convertScaleAbs(y)Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
# Laplacian算子dst = cv2.Laplacian(binary, cv2.CV_16S, ksize=3)Laplacian = cv2.convertScaleAbs(dst)

# 用来正常显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']
# # 显示图形plt.figure(figsize=(12, 5))plt.subplot(231), plt.imshow(grayImage), plt.title( '原始图像'), plt.axis('off') # 坐标轴关闭plt.subplot(232), plt.imshow( binary, cmap=plt.cm.gray), plt.title('二值图'), plt.axis('off')plt.subplot(233), plt.imshow(Roberts, cmap=plt.cm.gray), plt.title( 'Roberts算子'), plt.axis('off')plt.subplot(234), plt.imshow(Prewitt, cmap=plt.cm.gray), plt.title( 'Prewitt算子'), plt.axis('off')plt.subplot(235), plt.imshow(Sobel, cmap=plt.cm.gray), plt.title( 'Sobel算子'), plt.axis('off')plt.subplot(236), plt.imshow(Laplacian, cmap=plt.cm.gray), plt.title( 'Laplacian算子'), plt.axis('off')
plt.show()
https://blog.csdn.net/sml115161/article/details/120689698
https://ww2.mathworks.cn/help/releases/R2020b/images/ref/imfilter.html
https://blog.csdn.net/qq_43826220/article/details/127568505

评论 (0)
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 194浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 180浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 304浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 274浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 320浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 299浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 324浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 491浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 263浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 230浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 275浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 169浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 123浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 200浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 377浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦