从《精通开关电源设计》整理出的“反激变换器的设计步骤”!

电源研发精英圈 2019-04-12 20:00

《让世界看到屏幕背后的工程师—祝贺张飞电子视频销量突破一千万》

张飞电子视频教程销量突破1000万,疯狂促销中,淘宝店铺地址:fcsddz.taobao.com

《60小时精通LLC开关电源设计》视频教程已经在淘宝店铺上架预售。

齐纳管吸收漏感能量的反激变换器:

0. 设计前需要确定的参数
A 开关管Q的耐压值:Vmq
B 输入电压范围:Vinmin ~ Vinmax
C 输出电压Vo
D 电源额定输出功率:Po(或负载电流Io)
E 电源效率:X
F 电流/磁通密度纹波率:r(取0.5,见注释C)
G 工作频率:f
H 最大输出电压纹波:Vopp

1. 齐纳管DZ的稳压值Vz
Vz <= Vmq × 95% - Vinmax,开关管Q承受的电压是Vin + Vz,在Vinmax处还应为Vmq保留5%裕量,因此有 Vinmax + Vz < Vmq × 95% 。

2. 一次侧等效输出电压Vor
Vor = Vz / 1.4(见注释A)

3. 匝比n(Np/Ns)
n = Vor / (Vo + Vd),其中Vd是输出二极管D的正向压降,一般取0.5~1V 。

4. 最大占空比的理论值Dmax
Dmax = Vor / (Vor + Vinmin),此值是转换器效率为100%时的理论值,用于粗略估计占空比是否合适,后面用更精确的算法计算。
一般控制器的占空比限制Dlim的典型值为70%。

-----------------------------------------------------------------------------
上面是先试着确定Vz,也可以先试着确定n,原则是 n = Vin / Vo,Vin可以取希望的工作输入电压,然后计算出Vor,Vz,Dmax等,总之这是计算的“起步”过程,根据后面计算考虑实际情况对n进行调整,反复计算,可以得到比较合理的选择。
-----------------------------------------------------------------------------

5. 负载电流Io
Io = Po / Vo,如果有多个二次绕组,可以用单一输出等效。

6. 一次侧有效负载电流Ior
Ior = Io / n ,由Ior × Np = Io × Ns得来。

7. 占空比D
D = Iin / (Iin + Ior),其中Iin = Pin / Vin,而Pin = Po / X。这里Vin取Vinmin。(见注释B)

8. 二次电流斜坡中心值Il
Il = Io / (1 - D)

9. 一次电流斜坡中心值Ilr
Ilr = Il / n

10. 峰值开关电流Ipk
Ipk = (1 + 0.5 × r) × Ilr

11. 伏秒数Et
Et = Vinmin × D / f ,(Et = Von × Ton = Vinmin × D/f)

12. 一次电感Lp
Lp = Et / (Ilr × r)

13. 磁芯选择
(1)Ve = 0.7 × (((2 + r)^2) / r) × (Pin / f),Ve单位cm^3;f单位KHz,根据此式确定磁芯有效体积Ve,寻找符合此要求的磁芯。(见注释D)
(2)最适合反激变压器的磁芯是“E Cores”和“U Cores”,“ETD"、”ER"、“RM"这三种用于反激性能一般,而“Planar E”、“EFD"、”EP"、“P"、”Ring"型不适合反激变压器。
(3)材质选锰锌铁氧体,PC40比较常用且经济。

14. 一次匝数Np
Np = (1 + 2/r) × (Von × D)/(2 × Bpk × Ae × f),其中Von = Vinmin - Vq, Vq是开关管Q的导通压降;Bpk不能超过0.3T,一般反激变压器取0.3T;Ae是磁芯的有效截面积,从所选磁芯的参数中查的。(公式推导见注释E,说明见注释F)

15. 二次匝数Ns
Ns = Np / n,此值小数不可忽略时向上取整,如1.62T取2T,然后重新计算Np = Ns × n 。

16. 匝数调整后实际磁通密度变化范围验证
Bpk = Bpk0 × Np0 / Np,Bpk0、Np0是调整前的磁通密度峰值和一次匝数。(根据:Bpk与匝数成反比)
dB = (2r/(r + 2)) × Bpk

17. 气隙系数z
z = (1 / Lp) × (u × u0 × Ae / le) × Np^2,其中u是磁芯材料的相对磁导率,Ae、le分别是磁芯的有效截面积和有效长度,这些参数由磁芯手册提供,u0是真空磁导率,值为4 × PI × 10^(-7) 。(见注释G)

18. 气隙长度lg
lg = le × (z - 1) / u,其中u是磁芯材料的相对磁导率。(见注释G)

19. 绕组导线的集肤深度h
h = 66.1 × (1 + 0.0042 × (T - 20)) / f^0.5,所得单位为mm,其中T是工作温度,可取80,即最高环境温度40摄氏度时可以有40度的温升。

20. 绕组导线的线径d
d = 2h,若选用铜皮,则铜皮厚度同样按此计算,即 2h 。

21. 绕组导线的电流承载能力Im
Im = PI × (d/2)^2 × J,其中J是电流密度,反激变压器一般取典型值 493 A/cm^2(400 cmil/A)。

22. 一次绕组导线的股数Mp
Mp = Ilr / Im

23. 二次绕组导线的股数Ms
Ms = Il / Im

24. 确定变压器组装结构
根据上面计算的变压器各项参数,合理安排绕组排列、绝缘安排等,绕组安排(从磁芯由近及远)可参考如下:
(1)一般排列是,一次,二次,反馈。
(2)二次,反馈,一次,这种排法有利于一次绕组对磁芯的绝缘安排。
(3)一半一次,二次/反馈,一半一次,这种排法有利于减少漏感。

25. 输出二极管的额定电流Idm
Idm = 2 × Io(见注释H)

26. 输出二极管的额定电压Vdm
Vdm = (1 + 20%) × (Vo + Vinmax / n) (见注释I)

27. 开关管的额定电流Iqm
Iqm = 2 × Ilr × (D × (1 + r^2/12))^0.5 (见注释J)

28. 开关管的额定耐压Vqm
Vqm = (1 + 20%) × (Vor + Vinmax) (见注释K)

29. 输入电容值Cin
Cin = Kcp × Po / X,系数 Kcp 取经验值 3uF/W 。

30. 输入电容额定电流纹波Icind
Icind = Ilr × (D × (1 - D + r^2/12))^0.5 (见注释L)

31. 输入电容的耐压Vcin
Vcin = (1 + 30%) × Vinmax ,30%为保留裕量。

32. 输出电容值Co
Co = Io × D / (f × Vopp) ,(见注释M)

33. 输出电容额定电流纹波Icod
Icod = Io × ((D + r^2/12) / (1 - D))^0.5 (见注释N)

34. 输出电容的耐压Vco
Vco = (1 + 30%) × Vo ,30%为保留裕量。

35. 反向二极管D1的耐压Vd1
Vd1 = (1 + 20%) × Vinmax , 20%为保留的裕量。

36. 反向二极管的电流Id1
Id1 = 0.2 × Ilr (见注释O)

37. 漏感Llk
Llk = Lp × 0.05,根据经验取一次电感的5%,一般反激变压器为2%~20%。

38. 齐纳管功率Pz
Pz = Llk × Ipk^2 × (Vz / (Vz - Vor)) × f,此处为2倍计算的功率值以留足够裕量。(见注释A)

-----------------------------------------------------------------------------
齐纳管损耗可能会比较大,以致无法找到合适器件,所以需要对尖峰吸收电路进行更改,实际应用中一般较多采用RCD电路对漏感尖峰进行吸收,下面的计算针对此RCD电路。
-----------------------------------------------------------------------------

RCD吸收漏感能量的反激变换器:

39. RCD电路电容最大电压Vcmax (见注释P)
Vcmax = Vor / D

40. RCD电路电容值Crcd (见注释P)
Crcd = Ipk^2 × Llk / (Vcmax^2 × (1 - e^(2 × ln(D) / (1 - D)))

41. RCD电路电阻值Rrcd (见注释P)
Rrcd = (D - 1) / (C × f × ln(D))

42. RCD电路电阻功率Pr (见注释P)
Pr = Llk × Ipk^2 × f, 此值为2倍的电阻实际消耗功率,以留出足够裕量。

--------------------------------------------------------------------------------------------
如果漏感损耗较大,或考虑进一步提高效率,齐纳管钳位和RCD吸收都无法满足要求,可以考虑LCD无损吸收网络,它可以把漏感能量重新返回输入电容,下面的计算针对此部分。
--------------------------------------------------------------------------------------------

LCD无损吸收的反激变换器:

43. 缓冲电容低压Vcr0 (见注释Q)
Vcr0 = Vor (根据情况可选择略高于此值)

44. 缓冲电容高压Vcr1 (见注释Q)
Vcr1 = k × Vcr0,k是系数,可根据情况选1.5~3,也可以更高,但需注意Q的耐压。

45. 缓冲电容值Cr (见注释Q)
Cr = Llk × Ipk^2 / (Vcr1^2 - Vcr0^2)

46. 储能电感值Lr (见注释Q)
Lr = Lr = D^2 / (Cr × f^2 × (arccos(Vcr0 / Vcr1))^2)

47. 储能电感额定电流Ilrm (见注释Q)
Ilrm = 1.5 × (Cr / Lr)^0.5 × Vcr1 × sin(D / (f × (Lr × Cr)^0.5)),此值为最大电流值的1.5倍,考虑了留出裕量。

至此电路中所有元件的主要参数计算完毕。


注释
A 齐纳管钳位损耗 Pz = 0.5 × Llk × Ipk^2 × (Vz / (Vz - Vor)) × f,其中Llk是所有漏感 -- 不只是一次漏感Llkp,Ipk是一次电流的峰值。通过此式可看出若Vz接近Vor,则损耗巨大;若以Vz/Vor为变量画出钳位损耗的曲线,则所有情况下,Vz/Vor = 1.4 均为曲线上的明显下降点。
B 1. 变压器中电流情况有 Iin / D = Ior / (1 - D),由此得 D = Iin / (Iin + Ior);2. 所有设计均在Vinmin下进行。
C 设计离线变压器时,考虑降低损耗、减小体积等原因,通常将r设定为0.5左右。
D 反激电源变压器一般绕线不成问题,即不大设计窗口面积使用问题,所以不必用AP法。
E Von = Np × Ae × (dB/dt) -> Von × dt = Np × Ae × dB -> Np = (Von × dt) / (dB × Ae) = (Von × D/f) / (dB × Ae) = (Von × D) / (dB × Ae × f) = (Von × D) / ((2r/(r + 2)) × Bpk × Ae × f) = (1 + 2/r) × (Von × D)/(2 × Bpk × Ae × f)
F Np计算完后应验证此值是否适合磁芯的窗口面积,及骨架、隔离带、安全胶带、二次绕组和套管等,通常在反激变压器中这些都不会有问题;如果需要减少Np,可以考虑增大r,减小D,或增大磁芯面积,但磁导率和气隙不会解决问题。
G 电感与磁导率的相关方程:L = (1/z) × (u × u0 × Ae / le) × N^2,其中气隙系数 z = (le + u × lg) / le 。对于铁氧体材料的气隙变压器,z 取值10 ~ 20是较好的折中选择。
H 反激(buck-boost)中二极管平均电流等于负载电流Io,损耗是Pd = Io × Vd,而二极管正向压降Vd随其额定电流上升而下降,故折中考虑,选取其额定电流为2 × Io 。
I Buck-boost 中二极管最大承压是 Vinmax + Vo,在反激中Vinmax折算到二次侧为 Vinmax / n,同时给额定值留出20%的裕量,所以最终选择二极管的额定耐压定位 Vdm = Vdm = (1 + 20%) × (Vo + Vinmax / n) 。
J 对所有拓扑,开关管有效值电流在Dmax处最大,且 Iqrms = Il_dmax × (Dmax × (1 + r_dmax^2/12))^0.5,开关管的损耗 Pq = Iqrms^2 × Rds,其中Rds是开关管的正向压降,此压降随开关管的额定电流增大而减小,所以折中选择开关管的额定电流为 2 × Iqrms 。
K Buck-boost 中开关管最大承压是 Vinmax + Vo,在反激变换器中Vo折算到一次侧为 Vor,同时给额定值预留20%的裕量,所以最终选择开关管的耐压为 Vqm = (1 + 20%) × (Vor + Vinmax)
L Buck-boost 中输入电容最恶劣电流有效值发生在Dmax,其值为 Irms_cin = Il_dmax × (Dmax × (1 - Dmax + r_dmax^2/12))^0.5 ,一般选择电容时其额定纹波电流应等于或大于此值。
M 根据如下:Co 实际上需要维持t_on时的电荷流失,此电荷量为 dQ = Io × t_on,而此时电容电压的变化是 dUco = dQ / Co = Vopp,由此得 Co = lo × t_on / Vopp 。
N Buck-boost 中输出电容最恶劣有效值发生在Dmax, 其值为 Irms_co = Io × ((Dmax + r_dmax^2/12) / (1 - Dmax))^0.5 ,一般选择电容是器额定纹波电流应等于或大于此值。
O 考虑漏感电流不超过一次绕组电流的20%,仅为估计,无计算根据。
P RCD电路的分析和计算如下:
(1)工作过程:开关管截止后,漏感电流通过D对C迅速充电,然后C通过R放电,消耗漏感能量于R上。
(2)充电过程时间很短,相对整个周期可以忽略。
(3)C不能太大,否则吸收能量过多,影响变压器能量传递,同时R成为变换器的死负载。
(4)R不能太小,否则放电太快,C电压降到反射电压(Vor)时R开始消耗二次传过来的能量,所以R要使C的放电电压在开关导通时不小于反射电压。
根据以上分析,计算推导如下:
Vcmax > Vor,把Vc线性化,可得 Vcmax / Vor = T / t_ON,T为开关周期,t_ON为开关导通时间,由此得
Vcmax = Vor / D  (式1)
当开关导通时C上电压刚好等于反射电压有:Vcmax × e^(-(1 - D) × T / (R × C)) = Vor,由 T = 1 / f 整理得
R × C = (D - 1)  / (f × ln(D)) (式2)
Vc的最小值 Vcmin = Vcmax × e^(-T / (R × C)) (式3)
此时漏感能量全部被RC电路吸收,有如下方程:
0.5 × Llk × Ipk^2 = 0.5 × C × (Vcmax^2 - Vcmin^2) (式4)
整理式3和式4可以得到
C = Ipk^2 × Llk / (Vcmax^2 × (1 - e^(2 × ln(D) / (1 - D)))
由上式和式2可以得
R = (D - 1) / (C × f × ln(D))
电阻R消耗的功率是 Pr = 0.5 × Llk × Ipk^2 × f
Q LCD无损吸收网络的分析和计算:

(1)开关管截止时,一方面变压器漏感和一次绕组通过D1对Cr充电,把漏感能量储存于Cr;另一方面,Lr的电流储能通过D1、D2反馈给电源输入电容C_IN 。
(2)开关管导通时,Cr通过D2、Lr进行放电,把能量传递给Lr,能量由电容电压转换为电感的电流能量。
(3)稳态下,设Cr开始充电(Q截止)时电压是Vcr0,充电结束时电压是Vcr1,则为了不吸收便压器正常工作的能量传递有 Vcr0 >= Vor;考虑能量的传递过程则有 0.5 × Llk × Ipk^2 = 0.5 × Cr × (Vcr1^2 - Vcr0^2),令 k = Vcr1 / Vcr0,同时设Vcr0 = Vor,整理得 Cr = Llk × Ipk^2 / (Vor × (k^2 - 1)) 。
(4)稳态下,Cr的放电过程(Q导通)也就是Cr、Lr的谐振过程,所以Cr的电压方程是 uc = Vcr1 × cos(wt),Lr的电流方程是 il = (Cr / Lr)^0.5 × Vcr1 × sin(wt),其中角频率 w = 1 / (Lr × Cr)^0.5 。此处我们需要在导通时间结束时Cr上的电压降至Vcr0,由此得 Vcr1 × cos(w × (D / f)) = Vcr0,且 w × (D / f) < PI / 2,PI是圆周率。整理方程得 Lr = D^2 / (Cr × f^2 × (arccos(Vcr0 / Vcr1))^2) 。
(5)Q截止状态下Cr充电的时间和Q导通状态下Lr的续流放电时间很短,因此在分析过程中忽略。


参考:“精通开关电源设计”(Switching Power Supplies A to Z),by Sanjaya Maniktala / 王志强

转载自《新浪博客》jerry的博客


公众号推荐:电源研发精英圈(已有6W+电源工程师关注)

公众号推荐张飞实战电子(已有10W+电子工程师关注)

电源研发精英圈 开关电源研发工程师精英汇集的平台!我们将定期发送开关电源技术资料与行业新闻,欢迎各位关注。(关键字: 电源开发工程师,LED电源,LED驱动电源,电源工程师, 电源学习,电源知识,电源技术,线性电源,逆变电源,电源芯片,电源模块,电源系统)
评论 (0)
  •   网络链路攻防战术对抗仿真系统软件深度剖析   一、系统概览   北京华盛恒辉网络链路攻防战术对抗仿真系统软件,是专为网络安全领域攻防对抗需求打造的高仿真平台。它模拟真实网络环境中的攻、防行为,为安全研究人员以及红队、蓝队提供实战训练和策略验证工具。该系统以动态仿真技术为核心,融合人工智能与大数据分析,实现攻防战术的自动推演与可视化展示 。   应用案例   目前,已有多个网络链路攻防战术对抗仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润网络链路攻防战术对抗仿
    华盛恒辉l58ll334744 2025-04-16 14:42 94浏览
  • 4月15日,京东全球购迎来十周年生日。为了回馈广大用户十年来的支持与信赖,早在4月初,京东全球购就已率先开启十周年庆典活动,为消费者带来了一场消费盛宴。来自全球各地的进口好物,以全场进口大牌1元抢、爆品低至5折、跨店每满200减30的优惠价格被呈现在消费者面前。同时,在迎来十周年庆典之际,京东全球购还宣布,未来一年,将投入亿级资源,升级四大商家扶持举措,包括提供仓配和流量等多项补贴,推出扶持新品、新商家等举措,助力更多进口商家降本提效,在京东获得可持续、高质量成长。十年如一日 打造跨境购物首选平
    华尔街科技眼 2025-04-16 16:18 116浏览
  • 多极电磁铁的核心应用领域一、工业制造领域1.‌磁性材料处理‌:用于多极磁环充磁,通过四极、六极或八极磁场设计,使磁环获得均匀或梯度分布的磁性能,提升电机、传感器等设备的效率‌。在电子束焊接中控制电子束的聚焦和偏转,增强焊接精度(如精密电子元件加工)‌。2.‌机械控制与自动化‌应用于旋转磁场导向系统,优化工业机器人、自动化产线中磁性物料的传输路径。配合电磁吸盘用于起重设备,实现对金属部件的快速吸附与释放,提高搬运效率。二、科研实验领域1.‌物理与材料研究‌在实验室中生成径向梯度磁场或均匀磁场,用于
    锦正茂科技 2025-04-16 09:39 80浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 242浏览
  •   水下装备体系论证系统软件全面解析   一、系统概述   水下装备体系论证系统软件是针对水下作战、资源勘探、海洋工程等需求,专门设计的信息化论证工具。该系统通过集成建模、仿真、优化等技术,对水下装备体系的使命任务、环境适应性、技术参数、作战效能等进行全流程分析,为装备体系设计、方案权衡和决策提供科学依据。   应用案例   目前,已有多个水下装备体系论证系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润水下装备体系论证系统。这些成功案例为水下装备体系论证系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-16 17:03 147浏览
  • 在这个AI技术日新月异的时代,人工智能(AI)已经逐渐渗透到我们生活的方方面面,从工作到学习,从娱乐到医疗,AI都在以其独特的方式改变着我们的世界。作为一名计算机专业的大学老师,我近期有幸阅读了《AI帮你赢:人人都能用的AI方法论》一书,深感这本书不仅为专业人士提供了宝贵的AI使用技巧,更为广大学生打开了一扇通往AI世界的大门。 《AI帮你赢》一书于2024年12月正式出版,也是紧跟时代发展的一本书,最新的日期。这本书以通俗易懂的语言,系统地阐述了人工智能的核心理念、应用场景及实践方法
    curton 2025-04-16 21:47 93浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 143浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 103浏览
  • 瑞芯微电子(Rockchip)是国内领先的AIoT SoC设计制造企业,专注于智能应用处理器及周边配套芯片的研发。飞凌嵌入式作为瑞芯微的战略合作伙伴,已基于瑞芯微RK3399、RK3568、RK3588、RK3576、RK3562和RK3506系列处理器推出了多款嵌入式主控产品,包括核心板、开发板和工控机,这些产品已成功帮助数千家企业客户完成了项目的快速开发和落地。本文将系统地梳理飞凌嵌入式RK平台主控产品在开发过程中常用的命令,助力更多开发者快速掌握RK系列芯片的开发方法。01、查看CPU温度
    飞凌嵌入式 2025-04-16 15:50 168浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 287浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 151浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 330浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦