一个单片机驱动LCD的编程思路

混说Linux 2023-03-22 11:32

点击左上方蓝色“混说Linux”,选择“设为星标

第一时间看干货文章



 1

单片机驱动LCD的方法有很多,网络上也有很多配套的例程,但是,网上例程千千万,谁是你的“no.1”。

今天给大家分享一个以面向对象的方式用单片机驱动LCD的思路。

LCD种类概述

在讨论怎么写LCD驱动之前,我们先大概了解一下嵌入式常用LCD。概述一些跟驱动架构设计有关的概念,在此不对原理和细节做深入讨论,会有专门文章介绍,或者参考网络文档。

TFT lcd

TFT LCD,也就是我们常说的彩屏。通常像素较高,例如常见的2.8寸,320x240像素。4.0寸的,像素800x400。这些屏通常使用并口,也就是8080或6800接口(STM32 的FSMC接口);或者是RGB接口,STM32F429等芯片支持。其他例如手机上使用的有MIPI接口。

总之,接口种类很多。也有一些支持SPI接口的。除非是比较小的屏幕,否则不建议使用SPI接口,速度慢,刷屏闪屏。玩STM32常用的TFT lcd屏幕驱动IC通常有:ILI9341/ILI9325等。

tft lcd:

IPS:

COG lcd

很多人可能不知道COG LCD是什么,我觉得跟现在开发板销售方向有关系,大家都出大屏,玩酷炫界面,对于更深的技术,例如软件架构设计,都不涉及。使用单片机的产品,COG LCD其实占比非常大。COG是Chip On Glass的缩写,就是驱动芯片直接绑定在玻璃上,透明的。实物像下图:

这种LCD通常像素不高,常用的有128X64,128X32。一般只支持黑白显示,也有灰度屏。

接口通常是SPI,I2C。也有号称支持8位并口的,不过基本不会用,3根IO能解决的问题,没必要用8根吧?常用的驱动IC:STR7565。

OLED lcd

买过开发板的应该基本用过。新技术,大家都感觉高档,在手环等产品常用。OLED目前屏幕较小,大一点的都很贵。在控制上跟COG LCD类似,区别是两者的显示方式不一样。从我们程序角度来看,最大的差别就是,OLED LCD,不用控制背光。。。。。实物如下图:

常见的是SPI跟I2C接口。常见驱动IC:SSD1615。

硬件场景

接下来的讨论,都基于以下硬件信息:

1、有一个TFT屏幕,接在硬件的FSMC接口,什么型号屏幕?不知道。

2、有一个COG lcd,接在几根普通IO口上,驱动IC是STR7565,128X32像素。

3、有一个COG LCD,接在硬件SPI3跟几根IO口上,驱动IC是STR7565,128x64像素。

4、有一个OLED LCD,接在SPI3上,使用CS2控制片选,驱动IC是SSD1315。

预备知识

在进入讨论之前,我们先大概说一下下面几个概念,对于这些概念,如果你想深入了解,请GOOGLE。

面向对象

面向对象,是编程界的一个概念。什么叫面向对象呢?编程有两种要素:程序(方法),数据(属性)。例如:一个LED,我们可以点亮或者熄灭它,这叫方法。LED什么状态?亮还是灭?这就是属性。我们通常这样编程:

u8 ledsta = 0;
void ledset(u8 sta)
{
}

这样的编程有一个问题,假如我们有10个这样的LED,怎么写?这时我们可以引入面向对象编程,将每一个LED封装为一个对象。可以这样做:

/*
定义一个结构体,将LED这个对象的属性跟方法封装。
这个结构体就是一个对象。
但是这个不是一个真实的存在,而是一个对象的抽象。
*/

typedef struct{
    u8 sta;
    void (*setsta)(u8 sta);
}LedObj;

/*  声明一个LED对象,名称叫做LED1,并且实现它的方法drv_led1_setsta*/
void drv_led1_setsta(u8 sta)
{
}

LedObj LED1={
        .sta = 0,
        .setsta = drv_led1_setsta,
    };

/*  声明一个LED对象,名称叫做LED2,并且实现它的方法drv_led2_setsta*/
void drv_led2_setsta(u8 sta)
{
}

LedObj LED2={
        .sta = 0,
        .setsta = drv_led2_setsta,
    };
    
/*  操作LED的函数,参数指定哪个led*/
void ledset(LedObj *led, u8 sta)
{
    led->setsta(sta);
}

是的,在C语言中,实现面向对象的手段就是结构体的使用。上面的代码,对于API来说,就很友好了。操作所有LED,使用同一个接口,只需告诉接口哪个LED。大家想想,前面说的LCD硬件场景。4个LCD,如果不面向对象,「显示汉字的接口是不是要实现4个」?每个屏幕一个?

驱动与设备分离

如果要深入了解驱动与设备分离,请看LINUX驱动的书籍。

什么是设备?我认为的设备就是「属性」,就是「参数」,就是「驱动程序要用到的数据和硬件接口信息」。那么驱动就是「控制这些数据和接口的代码过程」

通常来说,如果LCD的驱动IC相同,就用相同的驱动。有些不同的IC也可以用相同的,例如SSD1315跟STR7565,除了初始化,其他都可以用相同的驱动。例如一个COG lcd:

驱动IC是STR7565 128 * 64 像素用SPI3背光用PF5 ,命令线用PF4 ,复位脚用PF3

上面所有的信息综合,就是一个设备。驱动就是STR7565的驱动代码。

为什么要驱动跟设备分离,因为要解决下面问题:

有一个新产品,收银设备。系统有两个LCD,都是OLED,驱动IC相同,但是一个是128x64,另一个是128x32像素,一个叫做主显示,收银员用;一个叫顾显,顾客看金额。

这个问题,「两个设备用同一套程序控制」才是最好的解决办法。驱动与设备分离的手段:

在驱动程序接口函数的参数中增加设备参数,驱动用到的所有资源从设备参数传入。

驱动如何跟设备绑定呢?通过设备的驱动IC型号。

模块化

我认为模块化就是将一段程序封装,提供稳定的接口给不同的驱动使用。不模块化就是,在不同的驱动中都实现这段程序。例如字库处理,在显示汉字的时候,我们要找点阵,在打印机打印汉字的时候,我们也要找点阵,你觉得程序要怎么写?把点阵处理做成一个模块,就是模块化。非模块化的典型特征就是「一根线串到底,没有任何层次感」

LCD到底是什么

前面我们说了面向对象,现在要对LCD进行抽象,得出一个对象,就需要知道LCD到底是什么。问自己下面几个问题:

  • LCD能做什么?
  • 要LCD做什么?
  • 谁想要LCD做什么?

刚刚接触嵌入式的朋友可能不是很了解,可能会想不通。我们模拟一下LCD的功能操作数据流。APP想要在LCD上显示 一个汉字。

1、首先,需要一个显示汉字的接口,APP调用这个接口就可以显示汉字,假设接口叫做lcd_display_hz。

2、汉字从哪来?从点阵字库来,所以在lcd_display_hz函数内就要调用一个叫做find_font的函数获取点阵。

3、获取点阵后要将点阵显示到LCD上,那么我们调用一个ILL9341_dis的接口,将点阵刷新到驱动IC型号为ILI9341的LCD上。

4、ILI9341_dis怎么将点阵显示上去?调用一个8080_WRITE的接口。

好的,这个就是大概过程,我们从这个过程去抽象LCD功能接口。汉字跟LCD对象有关吗?无关。在LCD眼里,无论汉字还是图片,都是一个个点。那么前面问题的答案就是:

  • LCD可以一个点一个点显示内容。
  • 要LCD显示汉字或图片-----就是显示一堆点
  • APP想要LCD显示图片或文字。

结论就是:所有LCD对象的功能就是显示点。「那么驱动只要提供显示点的接口就可以了,显示一个点,显示一片点。」 抽象接口如下:

/*
    LCD驱动定义
*/

typedef struct  
{

    u16 id;

    s32 (*init)(DevLcd *lcd);
    s32 (*draw_point)(DevLcd *lcd, u16 x, u16 y, u16 color);
    s32 (*color_fill)(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey, u16 color);
    s32 (*fill)(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey,u16 *color);
    s32 (*onoff)(DevLcd *lcd, u8 sta);
    s32 (*prepare_display)(DevLcd *lcd, u16 sx, u16 ex, u16 sy, u16 ey);
    void (*set_dir)(DevLcd *lcd, u8 scan_dir);
    void (*backlight)(DevLcd *lcd, u8 sta);
}_lcd_drv;

上面的接口,也就是对应的驱动,包含了一个驱动id号。

  • id,驱动型号
  • 初始化
  • 画点
  • 将一片区域的点显示某种颜色
  • 将一片区域的点显示某些颜色
  • 显示开关
  • 准备刷新区域(主要彩屏直接DMA刷屏使用)
  • 设置扫描方向
  • 背光控制

显示字符,划线等功能,不属于LCD驱动。应该归类到GUI层。

LCD驱动框架

我们设计了如下的驱动框架:

设计思路:

1、中间显示驱动IC驱动程序提供统一接口,接口形式如前面说的_lcd_drv结构体。

2、各显示IC驱动根据设备参数,调用不同的接口驱动。例如TFT就用8080驱动,其他的都用SPI驱动。SPI驱动只有一份,用IO口控制的我们也做成模拟SPI。

3、LCD驱动层做LCD管理,例如完成TFT LCD的识别。并且将所有LCD接口封装为一套接口。

4、简易GUI层封装了一些显示函数,例如划线、字符显示。

5、字体点阵模块提供点阵获取与处理接口。

由于实际没那么复杂,在例程中我们将GUI跟LCD驱动层放到一起。TFT LCD的两个驱动也放到一个文件,但是逻辑是分开的。OLED除初始化,其他接口跟COG LCD基本一样,因此这两个驱动也放在一个文件。

代码分析

代码分三层:

1、GUI和LCD驱动层 dev_lcd.c dev_lcd.h

2、显示驱动IC层 dev_str7565.c & dev_str7565.h dev_ILI9341.c & dev_ILI9341.h

3、接口层 mcu_spi.c & mcu_spi.h stm324xg_eval_fsmc_sram.c & stm324xg_eval_fsmc_sram.h

GUI和LCD层

这层主要有3个功能 :

「1、设备管理」

首先定义了一堆LCD参数结构体,结构体包含ID,像素。并且把这些结构体组合到一个list数组内。

/*  各种LCD的规格参数*/
_lcd_pra LCD_IIL9341 ={
        .id   = 0x9341,
        .width = 240,   //LCD 宽度
        .height = 320,  //LCD 高度
};
...
/*各种LCD列表*/
_lcd_pra *LcdPraList[5]=
            {
                &LCD_IIL9341,       
                &LCD_IIL9325,
                &LCD_R61408,
                &LCD_Cog12864,
                &LCD_Oled12864,
            };

然后定义了所有驱动list数组,数组内容就是驱动,在对应的驱动文件内实现。

/*  所有驱动列表
    驱动列表*/

_lcd_drv *LcdDrvList[] = {
                    &TftLcdILI9341Drv,
                    &TftLcdILI9325Drv,
                    &CogLcdST7565Drv,
                    &OledLcdSSD1615rv,

定义了设备树,即是定义了系统有多少个LCD,接在哪个接口,什么驱动IC。如果是一个完整系统,可以做成一个类似LINUX的设备树。

/*设备树定义*/
#define DEV_LCD_C 3//系统存在3个LCD设备
LcdObj LcdObjList[DEV_LCD_C]=
{
    {"oledlcd", LCD_BUS_VSPI, 0X1315},
    {"coglcd", LCD_BUS_SPI,  0X7565},
    {"tftlcd", LCD_BUS_8080, NULL},
};

「2 、接口封装」

void dev_lcd_setdir(DevLcd *obj, u8 dir, u8 scan_dir)
s32 dev_lcd_init(void)
DevLcd *dev_lcd_open(char *name)
s32 dev_lcd_close(DevLcd *dev)
s32 dev_lcd_drawpoint(DevLcd *lcd, u16 x, u16 y, u16 color)
s32 dev_lcd_prepare_display(DevLcd *lcd, u16 sx, u16 ex, u16 sy, u16 ey)
s32 dev_lcd_display_onoff(DevLcd *lcd, u8 sta)
s32 dev_lcd_fill(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey,u16 *color)
s32 dev_lcd_color_fill(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey,u16 color)
s32 dev_lcd_backlight(DevLcd *lcd, u8 sta)

大部分接口都是对驱动IC接口的二次封装。有区别的是初始化和打开接口。初始化,就是根据前面定义的设备树,寻找对应驱动,找到对应设备参数,并完成设备初始化。打开函数,根据传入的设备名称,查找设备,找到后返回设备句柄,后续的操作全部需要这个设备句柄。

「3 、简易GUI层」

目前最重要就是显示字符函数。

s32 dev_lcd_put_string(DevLcd *lcd, FontType font, int x, int y, char *s, unsigned colidx)

其他划线画圆的函数目前只是测试,后续会完善。

驱动IC层

驱动IC层分两部分:

「1 、封装LCD接口」

LCD有使用8080总线的,有使用SPI总线的,有使用VSPI总线的。这些总线的函数由单独文件实现。但是,除了这些通信信号外,LCD还会有复位信号,命令数据线信号,背光信号等。我们通过函数封装,将这些信号跟通信接口一起封装为「LCD通信总线」, 也就是buslcd。BUS_8080在dev_ILI9341.c文件中封装。BUS_LCD1和BUS_lcd2在dev_str7565.c 中封装。

「2 驱动实现」

实现_lcd_drv驱动结构体。每个驱动都实现一个,某些驱动可以共用函数。

_lcd_drv CogLcdST7565Drv = {
                            .id = 0X7565,

                            .init = drv_ST7565_init,
                            .draw_point = drv_ST7565_drawpoint,
                            .color_fill = drv_ST7565_color_fill,
                            .fill = drv_ST7565_fill,
                            .onoff = drv_ST7565_display_onoff,
                            .prepare_display = drv_ST7565_prepare_display,
                            .set_dir = drv_ST7565_scan_dir,
                            .backlight = drv_ST7565_lcd_bl
                            };

接口层

8080层比较简单,用的是官方接口。SPI接口提供下面操作函数,可以操作SPI,也可以操作VSPI。

extern s32 mcu_spi_init(void);
extern s32 mcu_spi_open(SPI_DEV dev, SPI_MODE mode, u16 pre);
extern s32 mcu_spi_close(SPI_DEV dev);
extern s32 mcu_spi_transfer(SPI_DEV dev, u8 *snd, u8 *rsv, s32 len);
extern s32 mcu_spi_cs(SPI_DEV dev, u8 sta);

至于SPI为什么这样写,会有一个单独文件说明。

总体流程

前面说的几个模块时如何联系在一起的呢?请看下面结构体:

/*  初始化的时候会根据设备数定义,
    并且匹配驱动跟参数,并初始化变量。
    打开的时候只是获取了一个指针 */

struct _strDevLcd
{

    s32 gd;//句柄,控制是否可以打开

    LcdObj   *dev;
    /* LCD参数,固定,不可变*/
    _lcd_pra *pra;

    /* LCD驱动 */
    _lcd_drv *drv;

    /*驱动需要的变量*/
    u8  dir;    //横屏还是竖屏控制:0,竖屏;1,横屏。
    u8  scandir;//扫描方向
    u16 width;  //LCD 宽度
    u16 height; //LCD 高度

    void *pri;//私有数据,黑白屏跟OLED屏在初始化的时候会开辟显存
};

每一个设备都会有一个这样的结构体,这个结构体在初始化LCD时初始化。

  • 成员dev指向设备树,从这个成员可以知道设备名称,挂在哪个LCD总线,设备ID。
typedef struct
{

    char *name;//设备名字
    LcdBusType bus;//挂在那条LCD总线上
    u16 id;
}LcdObj;
  • 成员pra指向LCD参数,可以知道LCD的规格。
typedef struct
{

    u16 id;
    u16 width;  //LCD 宽度  竖屏
    u16 height; //LCD 高度    竖屏
}_lcd_pra;
  • 成员drv指向驱动,所有操作通过drv实现。
typedef struct  
{

    u16 id;

    s32 (*init)(DevLcd *lcd);

    s32 (*draw_point)(DevLcd *lcd, u16 x, u16 y, u16 color);
    s32 (*color_fill)(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey, u16 color);
    s32 (*fill)(DevLcd *lcd, u16 sx,u16 ex,u16 sy,u16 ey,u16 *color);

    s32 (*prepare_display)(DevLcd *lcd, u16 sx, u16 ex, u16 sy, u16 ey);

    s32 (*onoff)(DevLcd *lcd, u8 sta);
    void (*set_dir)(DevLcd *lcd, u8 scan_dir);
    void (*backlight)(DevLcd *lcd, u8 sta);
}_lcd_drv;
  • 成员dir、scandir、 width、 height是驱动要使用的通用变量。因为每个LCD都有一个结构体,一套驱动程序就能控制多个设备而互不干扰。
  • 成员pri是一个私有指针,某些驱动可能需要有些比较特殊的变量,就全部用这个指针记录,通常这个指针指向一个结构体,结构体由驱动定义,并且在设备初始化时申请变量空间。目前主要用于COG LCD跟OLED LCD显示缓存。

整个LCD驱动,就通过这个结构体组合在一起。

1、初始化,根据设备树,找到驱动跟参数,然后初始化上面说的结构体。

2、要使用LCD前,调用dev_lcd_open函数。打开成功就返回一个上面的结构体指针。

3、显示字符,接口找到点阵后,通过上面结构体的drv,调用对应的驱动程序。

4、驱动程序根据这个结构体,决定操作哪个LCD总线,并且使用这个结构体的变量。

用法和好处

  • 好处1

请看测试程序

void dev_lcd_test(void)
{
    DevLcd *LcdCog;
    DevLcd *LcdOled;
    DevLcd *LcdTft;

    /*  打开三个设备 */
    LcdCog = dev_lcd_open("coglcd");
    if(LcdCog==NULL)
        uart_printf("open cog lcd err\r\n");

    LcdOled = dev_lcd_open("oledlcd");
    if(LcdOled==NULL)
        uart_printf("open oled lcd err\r\n");

    LcdTft = dev_lcd_open("tftlcd");
    if(LcdTft==NULL)
        uart_printf("open tft lcd err\r\n");

    /*打开背光*/
    dev_lcd_backlight(LcdCog, 1);
    dev_lcd_backlight(LcdOled, 1);
    dev_lcd_backlight(LcdTft, 1);

    dev_lcd_put_string(LcdOled, FONT_SONGTI_1212, 10,1"ABC-abc,", BLACK);
    dev_lcd_put_string(LcdOled, FONT_SIYUAN_1616, 113"这是oled lcd", BLACK);
    dev_lcd_put_string(LcdOled, FONT_SONGTI_1212, 10,30"www.wujique.com", BLACK);
    dev_lcd_put_string(LcdOled, FONT_SIYUAN_1616, 147"屋脊雀工作室", BLACK);

    dev_lcd_put_string(LcdCog, FONT_SONGTI_1212, 10,1"ABC-abc,", BLACK);
    dev_lcd_put_string(LcdCog, FONT_SIYUAN_1616, 113"这是cog lcd", BLACK);
    dev_lcd_put_string(LcdCog, FONT_SONGTI_1212, 10,30"www.wujique.com", BLACK);
    dev_lcd_put_string(LcdCog, FONT_SIYUAN_1616, 147"屋脊雀工作室", BLACK);

    dev_lcd_put_string(LcdTft, FONT_SONGTI_1212, 20,30"ABC-abc,", RED);
    dev_lcd_put_string(LcdTft, FONT_SIYUAN_1616, 20,60"这是tft lcd", RED);
    dev_lcd_put_string(LcdTft, FONT_SONGTI_1212, 20,100"www.wujique.com", RED);
    dev_lcd_put_string(LcdTft, FONT_SIYUAN_1616, 20,150"屋脊雀工作室", RED);

    while(1);
}

使用一个函数dev_lcd_open,可以打开3个LCD,获取LCD设备。然后调用dev_lcd_put_string就可以在不同的LCD上显示。其他所有的gui操作接口都只有一个。这样的设计对于APP层来说,就很友好。显示效果:

  • 好处2

现在的设备树是这样定义的

LcdObj LcdObjList[DEV_LCD_C]=
{
    {"oledlcd", LCD_BUS_VSPI, 0X1315},
    {"coglcd", LCD_BUS_SPI,  0X7565},
    {"tftlcd", LCD_BUS_8080, NULL},
};

某天,oled lcd要接到SPI上,只需要将设备树数组里面的参数改一下,就可以了,当然,在一个接口上不能接两个设备。

LcdObj LcdObjList[DEV_LCD_C]=
{
    {"oledlcd", LCD_BUS_SPI, 0X1315},
    {"tftlcd", LCD_BUS_8080, NULL},
};

字库

暂时不做细说,例程的字库放在SD卡中,各位移植的时候根据需要修改。具体参考font.c。

声明

本方法仅供学习编程思路和编程技巧,不一定适合所有项目。

本文系网络转载,版权归原作者所有,如有侵权,请联系删除。





往期推荐

校招进大疆了!

如何一步一步成为一个技术领域专家

离谱!入职BYD一个月,心态崩了。。。

C语言史上最愚蠢的BUG,你见过吗?

混说Linux 百度研发工程师,分享Linux干货,和大家一起学习!
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 444浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 43浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦