电源旁路电容为什么选择0.1uF10uF?

面包板社区 2023-03-18 23:05

本文共分为三个部分:

1、电源端加旁路电容的作用;
2、旁路电路的高频特性;

3、电源旁路电容的选择。

全文阅读大概需4分钟,希望博主敝帚自珍的这点理解对你有一点点帮助,当然文中的观点和陈述也可能不正确,欢迎交流讨论。
前言.

可能大伙儿看到“电源旁路电容为何要选择0.1uF 10uF?”这个标题,已经准备好50米大砍刀,撸起了袖子准备开喷啦

对于电容这个名词,相信咱们做电路的朋友(或者说学过模电,电路分析的童鞋们)再熟悉不过了,其或为隔直通交,或为匹配,或为旁路,或为传感器,或为DAC全二进制权重的电容阵列等等,基本上在有源电路与系统中99.99%的概率都会用到电容。

在微波射频网《3D动画+动图|详解电容工作原理》一文中,详细展开了关于电容的一些原理和基本用法,大家感兴趣可以前去进一步学习。本文主要集中讨论下射频微波电路中的电源去耦旁路电容的使用,根据笔者的理解去讨论回答下面两个问题:

(1)在射频电路中,为什么电源需要加旁路电容?

(2) 针对射频电源端的旁路电容我们又该如何选择呢,是不是直接用常见到的0.1uF,10uF的组合就可以了呢?



01.
电源端加旁路电容的作用


我们知道,射频电路最终需要外部提供一个直流电源供电,这个直流电源与射频芯片内部的晶体管或者场效应管的基极(栅极)或者集电极(漏极)直接相连,一方面,由于电源具有一定的纹波,往往会导致射频信号受到调制,表现出一定的信号恶化,更有甚者导致电路不稳定;另一方面,电路里面的射频信号看到电源端的等效输入阻抗极小,这便导致射频信号直接传输到了电源的地端,使输出射频信号大打折扣;最后便是各个模块之间,通过电源线相互耦合,导致射频模块电路性能恶化。


相信做过电路的童鞋们一定阅读过由日本铃木雅臣写的《晶体管电路设计(上)(下)》一书,该书可为学做实际模拟电路的宝典,在书中有这么一段话,我这里给摘抄下来。

因此在电源端加载旁路电容,不管是在模拟电路还是数字电路,都是十分必要的。


02.
旁路电容的高频特性


既然在电源端加载旁路电容十分必要,那么我们设计的时候怎么加载,加载多少旁路电容合适呢???

首先,我们知道电容的阻抗公式为:

那么在实际电路中,我们往往采用的多个旁路电容,这个时候一些小机灵就会问,岂不是就可以用一个来代替了?

一看上面的等效电路没毛病,至少从数学层面上来看似乎无懈可击,那么我们是不是就可以直接用一个电容值与两个并联电容值相同的电容来等效两个并联了呢?

从物理层面上来看,实际的电容是由寄生电阻,寄生电感,电容串联而成,如下图所示

因此我们可以得到如下所示的电容的频率响应函数曲线,当电容工作在自谐振频率时,电容的阻抗为纯实部,低于自谐振频率时呈现容性,高于自谐振频率时,电容变成了电感变现为感性。

因此,如果我们如果只是在电源上只加载一个电容,势必只能在比较窄的带宽内可以实现良好的旁路滤波效果(在一定带宽内对射频信号呈低阻状态),正如《晶体管电路设计》一书中讲到,由于电容的寄生效应,为了得到宽带内旁路滤波效果,我们一般至少需要加两个容值有差异的电容并联到电源线。

然而,同样在铃木雅臣的《晶体管电路设计》一书中并没有给出这两个容值一般差多少,书中倒是给出了一个实例,截图如下所示:

书中的电源旁路电容,选择了10uF和0.1uF,这样两个电容的容值比达到了100:1,这个时候,这样的示例在实际使用时往往又会存在一些问题,那到底是什么问题呢,我们下一小部分再来讨论。


03.
电源旁路电容的选择


承接上一小节的问题,我们讨论到了,旁路电容的比值问题,如果两电容差值过大会惹来一些不必要的麻烦,那么到底是啥麻烦呢???”。

首先我们先看一个由英飞凌公司给出的一个数据手册《Infineon-AN1032_Using_Decoupling_Capacitors-ApplicationNotes-v05_00-EN》,英飞凌想必大家都熟悉吧,全球功率半导体市场的市占率约为19%,排名第一,2020年4月,英飞凌以90亿欧元成功收购美国同行赛普拉斯(Cypress),让其实力更是傲视群雄。那么其官网给出的关于旁路去耦电容的相关数据手册想必对我们还是有一定帮助的,在文中其提到了22nF电容和100pF的等效电路如下图所示:。

我们期望当22nF的电容和100pF的电容并联后得到如下实线所示的效果

然而现实是当22nF的电容和100pF的电容并联后,得到了如下实线所示的效果

所以残酷的现实告诉我们,原本并联两个电容是想得到一个阻抗相对较低的,宽带的平滑曲线,但是现实是打脸的,在并联完了22nF与100pF的电容后,在其原来的两个电容的阻抗曲线交叠处出现了一个阻值极大值谐振点,这也导致这样组合并不合适于电源滤除高频的一些信号到地。

那么该如何选择旁路电容值呢?且看手册中的说明,如下

也就是说,我们最好采用的旁路电容值的间隔不要太远,最好是能够把容值之比控制在2:1之内。有图有真相,下面给出手册中将原来的20nF与100pF并联,改成20nF和10nF电容并联后的的阻抗-频率响应曲线图:

因此,后面如果要做好电路电源的滤波,旁路电容的选择要慎重又慎重,特别是看过上一篇射频问问RF测试专栏里面由J博客主写作的《PA的包络跟踪电源》一文,也提到了在功率放大器设计的时候,去耦和滤波一定要小心考虑。

好了,看到这里大伙心中是不是对电源旁路电容的使用原则有点点感觉了,

似乎明白的点在于:

1. 对电源加载旁路电容,由于寄生效应,我们常常采用两个以上的并联电容,用以提高其工作带宽;

2. 两个电容的电容比尽量控制在2:1。

这个时候,我们随便打开一些射频微波芯片数据手册,我看一些微波毫米波数据手册上面给的芯片外围参考旁路电容并非我们所述的2:1的比例,比如这样的:

(某Ka波段LNA旁路电容选取值推荐)

(某W波段LNA旁路电容选取值推荐)

这个时候手机旁边的你是不是又犯难了这个旁路电容到底该咋选取啊!!!

好了,笔者这里给出一些自家敝帚般的观点,如果说得不对的地方,欢迎留言或者到群里来和大家一起交流探讨

1. 针对板级射频电路的电源旁路电容的选择与布局

小电容尽量靠近芯片,大小电容的值最好是按照芯片数据手册的推荐值来,如下图示例所示:

如果按照数据手册的旁路测试得到的电路在低频仍有振荡,不妨考虑在小电容C_baypass1上面串联一个小电阻R1,比如下图所示:

在上文所述的英飞凌的那个数据手册之所以会存在并联后的一个谐振尖峰的原因,主要是两个电容的响应曲线交叠处的各自的电阻都比较大。因此,如果我们在旁路电容中的某一个低寄生电阻的那个小电容上面串联一个小电阻,那么整个电源的旁路针对某一频率的等效电阻就会与最小的那个电阻值接近,当我们人为地设计一个小电阻后,便可以尽量规避掉谐振尖峰阻抗。

2.针对芯片级射频电路的电源旁路电容的选择与布局

芯片级的旁路电容,主要还是需要注意电容自谐振频率的位置,尽可能地把最小的电容的自谐振频率推到工作频率以外,同样如果仍旧无法解决低频谐振,可以尝试上文提到的方案,得到如下图所示的电源旁路电路结构:

当然,第一级扇形电容还可以用多层传输线包夹射频地的平板形式的电容代替,或许大伙还有更多想法和技巧,欢迎留言或者入群交流。

END
社区有奖 原创征文

参与对象:面包板社区所有注册用户


如何参与:在面包板社区博客/论坛任何专区发布原创文章,并在发布文章时添加【原创奖励】标签,字数不限,文章通过社区评审,将获得10~100元现金/篇的奖励。


要求:

1、文章条理清晰,通俗易懂,非流水账堆积,非机翻
2、内容和电子行业相关,有干货,有可行性,实用性
3、多图,有代码,可加分

↓↓ 点击阅读原文,参加活动

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 247浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 136浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 267浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 191浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 162浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 262浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 239浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 256浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 237浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 221浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 196浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 116浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦