中国最活跃的射频微波天线雷达微信技术群
电子猎头:帮助电子工程师实现人生价值!
电子元器件:价格比您现有供应商最少降低10%
射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!
在射频超外差接收机中,下变频器是一种常用的功能组件,主要用于射频信号的侦测接收。针对 6 ~18 GHz 频段,提出一种下变频器的设计方案。下变频器采用混合集成电路工艺,中频处理带宽1 GHz,噪声系数优于6 dB,幅度一致性优于±2 dB,相位一致性优于±15°,无虚假动态范围大于50 dB。组件内部采用多功能芯片和 MEMS滤波器组,内置多级数控衰减和数控移相器。下变频器具有频段宽、体积小、集成度高、易于调试的优点。
下变频器是接收系统中的核心部件,接收系统需要把高频信号用下变频器转换到低频,便于后级进行信号处理。随着半导体技术的发展,单片微波集成电路(MMIC) 突破传统的混合微波集成电路(MIC)快速发展起来。MMIC 芯片尺寸小,寄生参数少,具有优秀的高频性能。MMIC 芯片的大规模运用已成为微波组件小型化的重要途径之一 。变频器也向着小型化、高集成、低成本的方向发展。
本文介绍一种高幅相一致6 ~18 GHz 下变频器的设计方案和测试结果,该组件采用毫米波变频方案,幅度和相位都可以数控调节。组件的噪声系数优于 6 dB,无虚假动态范围大于 50 dB,组件之间幅度一致性优于±2 dB,相位一致性优于±15°。组件内部采用多功能芯片,多功能芯片集成了混频器、倍频器、低噪声放大器以及开关。本组件体积小,集成度高,调试简单,可以满足工程应用的需求。
宽带下变频器设计要点是在确保噪声系数的基础上,避免带内及近边带杂散和虚假信号的产生。根据下变频的原理,一个变频器的杂散水平主要取决于以下两点:
本方案中,考虑到成本和体积,6 ~18 GHz 射频信号经过开关滤波器组划分为 8 个通道。如图 1 所示,变频选择毫米波本振方案,先将6 ~18 GHz 变频至 20 GHz 以上的高中频(HIF1 和 HIF2),再下变频到低中频。为确保第一次变频后的射频二次谐波不落进带内,6 ~12. 5 GHz 和 11. 5 ~18 GHz 分别变换至 27 GHz(HIF1)和 21 GHz(HIF2)高中频,对应的一本振 LO1 频率为 33 ~39 GHz。第二次变频选择两个点频作为二本振 LO2,最终获得 1. 8 GHz 中频,瞬时处理带宽为 1 GHz。本方案中,所有的频率都不超过 40 GHz,以目前的器件水平都比较易于实现。
一次混频杂散计算如图 2 所示,其中 m 和 n 分别表示射频和本振的阶数。可以看出,带内及近边带没有小于 3 阶的低阶杂散。
图 2 一次混频杂散分布
二次混频杂散如图 3 所示,只有中频的二次谐波和三次谐波组合会落入近边带,混频器对这些高阶组合的抑制度可以确保虚假和杂散指标。
上述论证分析表明该变频方案有效地避开了带内低次杂散。
电路划分为三部分:射频前端,变频电路,中频电路。下面分别介绍这三部分的电路细节。
2. 1 射频前端
射频前端部分由低噪声放大器、数控衰减器以及 MEMS 开关滤波网络组成,如图 4 所示。两级数控衰减器,可以将 40 dB 线性动态范围扩展为 75 dB全局动态范围。射频前端的设计增益为 14 dB,噪声系数为 4 dB,输入 1 dB 压缩点为-16 dBm。这里的设计应尽量提高射频前端的 1 dB 压缩点,以减小多信号交调,提高系统对多信号的线性处理能力。
2. 2 变频单元
2. 3 中频电路
中频电路如图 6 所示。中频电路主要用来补偿增益、滤除杂散信号,并通过均衡器来调节中频带宽内的增益平坦度。数控衰减器 B 可以和数控衰减器 A 根据频率控制码进行联合作用。数控衰减器 C用来配合温度传感器精确补偿增益在环境温度下的变化,也可以用来调节不同模块之间的幅度一致性。中频电路的设计增益为 28 dB,噪声系数为 4 dB。
根据上面的设计结果,对级联后的系统指标进行了仿真计算。系统总增益为 34 dB,噪声系数为5. 25 dB,满足设计指标的要求。
作为本设计的关键指标,幅度一致性是指组件个体之间对应于同一个射频频点(等功率输入)的中频输出功率一致性,相位一致性是指组件个体之间对应于同一个射频频点(等相位输入)的中频相位的一致性。由于射频频率被开关滤波器组划分为8 段,所以从测试结果来看,幅相一致性对应于 8 个射频频段的相位一致性。
幅相一致性设计主要靠以下几点来保证:
考虑到工程实际中幅度和相位的差值积累,电路调试手段不可缺少,本组件中设置有如下措施来调节模块之间的幅相一致性:
图 7 为变频单元测试板,两级变频芯片之间采用基片集成波导(SIW)滤波器。
变频器的实物尺寸为 130 mm×80 mm×20 mm,如图 8 所示。
同批次模块测试结果(除幅相一致性指标外)见表 1,测试结果达到了设计指标的要求。
表 1 测试指标与设计指标对照表
同批次模块的相位一致性测试曲线如图 9 所示,自上而下依次为 8 个射频通道的相位一致性测试曲线,可以看出,相位差值均在 20°以内,达到了设计指标(优于±15°)的要求。
图 9 相位一致性测试曲线
同批次模块的幅度一致性测试曲线如图 10 所示,该曲线为 6 ~18 GHz 范围内的射频频点对应的1. 8 GHz 中频幅度差值。可以看出,幅度差值均在2. 5 dB 以内,达到了设计指标(优于±2 dB)的要求。
本文介绍了一种高幅相一致6 ~18 GHz 下变频器的设计方案和测试结果。组件内部采用多功能芯片,片上集成了混频器、倍频器、低噪声放大器以及开关。测试结果表明,组件的无虚假动态范围大于50 dB,噪声系数优于 6 dB,幅度一致性优于±2 dB,相位一致性优于±15°。本组件体积小,本组件体积小,集成度高,易于调试,可以满足工程需要。(参考文献略)
作者:张得才 管 飞 吴志亮 王洪林 陈 坤
欢迎射频微波雷达通信工程师关注公众号
电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!
欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!
与我们合作,您的器件采购成本将相比原有供应商降低10%以上!!不信?那您就来试试吧!!欢迎来撩!!