GPT-4震撼发布:多模态大模型,直接升级ChatGPT、必应,开放API,游戏终结了?

谈思实验室 2023-03-15 18:02

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯


ChatGPT 点燃了科技行业的明灯,GPT-4 能燎原吗?


谁能革得了 ChatGPT 的命?现在看来还是 OpenAI 自己。

在 ChatGPT 引爆科技领域之后,人们一直在讨论 AI「下一步」的发展会是什么,很多学者都提到了多模态,我们并没有等太久。今天凌晨,OpenAI 发布了多模态预训练大模型 GPT-4。


GPT-4 实现了以下几个方面的飞跃式提升:强大的识图能力;文字输入限制提升至 2.5 万字;回答准确性显著提高;能够生成歌词、创意文本,实现风格变化。


「GPT-4 是世界第一款高体验,强能力的先进AI系统,我们希望很快把它推向所有人,」OpenAI 工程师在介绍视频里说道。

似乎是想一口气终结这场游戏,OpenAI 既发布了论文(更像是技术报告)、 System Card,把 ChatGPT 直接升级成了 GPT-4 版的,也开放了 GPT-4 的 API。

另外,微软营销主管在 GPT-4 发布后第一时间表示:「如果你在过去六周内的任何时候使用过新的 Bing 预览版,你就已经提前了解了 OpenAI 最新模型的强大功能。」是的,微软的新必应早就已经用上了GPT-4。


接下来,就让我们细细品味这场震撼发布。

GPT-4:我 SAT 考 710,也能当律师

GPT-4 是一个大型多模态模型,能接受图像和文本输入,再输出正确的文本回复。实验表明,GPT-4 在各种专业测试和学术基准上的表现与人类水平相当。例如,它通过了模拟律师考试,且分数在应试者的前 10% 左右;相比之下,GPT-3.5 的得分在倒数 10% 左右。

OpenAI 花了 6 个月的时间使用对抗性测试程序和 ChatGPT 的经验教训对 GPT-4 进行迭代调整 ,从而在真实性、可控性等方面取得了有史以来最好的结果。

在过去的两年里,OpenAI 重建了整个深度学习堆栈,并与 Azure 一起为其工作负载从头开始设计了一台超级计算机。一年前,OpenAI 在训练 GPT-3.5 时第一次尝试运行了该超算系统,之后他们又陆续发现并修复了一些错误,改进了其理论基础。这些改进的结果是 GPT-4 的训练运行获得了前所未有的稳定,以至于 OpenAI 能够提前准确预测 GPT-4 的训练性能,它也是第一个实现这一点的大模型。OpenAI 表示他们将继续专注于可靠的扩展,进一步完善方法,以帮助其实现更强大的提前预测性能和规划未来的能力,这对安全至关重要。

OpenAI 正在通过 ChatGPT 和 API(有候补名单)发布 GPT-4 的文本输入功能。图像输入功能方面,为了获得更广泛的可用性,OpenAI 正在与其他公司展开合作。

OpenAI 今天还开源了 OpenAI Evals,这是其用于自动评估 AI 模型性能的框架。OpenAI 表示此举是为了让所有人都可以指出其模型中的缺点,以帮助 OpenAI 进一步改进模型。

有趣的是,GPT-3.5 和 GPT-4 之间的区别很微妙。当任务的复杂性达到足够的阈值时,差异就会出现 ——GPT-4 比 GPT-3.5 更可靠、更有创意,并且能够处理更细微的指令。为了了解这两个模型之间的差异,OpenAI 在各种基准和一些为人类设计的模拟考试上进行了实验。



OpenAI 还在为机器学习模型设计的传统基准上评估了 GPT-4。GPT-4 大大优于现有的大型语言模型,以及大多数 SOTA 模型:


许多现有的机器学习基准测试都是用英语编写的。为了初步了解 GPT-4 在其他语言上的能力,研究团队使用 Azure Translate 将 MMLU 基准 —— 一套涵盖 57 个主题的 14000 个多项选择题 —— 翻译成多种语言。在测试的 26 种语言的 24 种中,GPT-4 优于 GPT-3.5 和其他大语言模型(Chinchilla、PaLM)的英语语言性能:


就像许多使用 ChatGPT 的公司一样,OpenAI 表示他们内部也在使用 GPT-4,因此 OpenAI 也在关注大型语言模型在内容生成、销售和编程等方面的应用效果。OpenAI 还使用 GPT-4 辅助人们评估 AI 输出,这也是 OpenAI 对其策略的第二阶段。OpenAI 既是 GPT-4 的开发者,也是使用者。

GPT-4:我能玩梗图

GPT-4 可以接受文本和图像形式的 prompt,新能力与纯文本设置并行,允许用户指定任何视觉或语言任务。

具体来说,它在人类给定由散布的文本和图像组成的输入的情况下生成相应的文本输出(自然语言、代码等)。在一系列领域 —— 包括带有文本和照片的文档、图表或屏幕截图上 ——GPT-4 展示了与纯文本输入类似的功能。此外,它还可以通过为纯文本语言模型开发的测试时间技术得到增强,包括少样本和思维链 prompt。

比如给 GPT-4 一个长相奇怪的充电器的图片,问为什么这很可笑?


GPT-4 回答道,VGA 线充 iPhone。


格鲁吉亚和西亚的人均每日肉类消费,算平均数:


看起来,现在的 GPT 已经不会在计算上胡言乱语了:


还是太简单,那直接让它做题,还是个物理题:


GPT-4 看懂了法语题目,并完整解答:


GPT-4 可以理解一张照片里「有什么不对劲的地方」:


GPT-4 还可以量子速读看论文,如果你给它 InstructGPT 的论文,让它总结摘要,就会变成这样:



如果你对论文里的某一个图感兴趣呢?GPT-4 也可以解释一下:


接着来,问 GPT-4 梗图是什么意思:


它给出了详细的回答:


那么漫画呢?


让 GPT-4 解释为什么要给神经网络加层数,似乎有一点加倍的幽默感。


不过 OpenAI 在这里说了,图像输入是研究预览,仍不公开。

研究人员用学术的 Benchmark 视角来解读 GPT-4 的看图能力,然而这已经不够了,他们还能不断发现该模型可以令人兴奋地处理新任务 —— 现在的矛盾是 AI 的能力和人类想象力之间的矛盾。


看到这里,应该有研究人员感叹:CV 不存在了。

可控性

与具有固定冗长、平静语气和风格的经典 ChatGPT 个性不同,开发人员(以及 ChatGPT 用户)现在可以通过在「系统」消息中描述这些方向来规定他们的 AI 的风格和任务。

系统消息允许 API 用户在一定范围内定制化实现不同的用户体验。OpenAI 知道你们在让 ChatGPT 玩 Cosplay,也鼓励你们这样做。


局限性

尽管功能已经非常强大,但 GPT-4 仍与早期的 GPT 模型具有相似的局限性,其中最重要的一点是它仍然不完全可靠。OpenAI 表示,GPT-4 仍然会产生幻觉、生成错误答案,并出现推理错误。

目前,使用语言模型应谨慎审查输出内容,必要时使用与特定用例的需求相匹配的确切协议(例如人工审查、附加上下文或完全避免使用) 。

总的来说,GPT-4 相对于以前的模型(经过多次迭代和改进)已经显著减轻了幻觉问题。在 OpenAI 的内部对抗性真实性评估中,GPT-4 的得分比最新的 GPT-3.5 模型高 40%:


GPT-4 在 TruthfulQA 等外部基准测试方面也取得了进展,OpenAI 测试了模型将事实与错误陈述的对抗性选择区分开的能力,结果如下图所示。


实验结果表明,GPT-4 基本模型在此任务上仅比 GPT-3.5 略好;然而,在经过 RLHF 后训练之后,二者的差距就很大了。以下是 GPT-4 的测试示例 —— 并不是所有时候它都能做出正确的选择。


该模型在其输出中可能会有各种偏见,OpenAI 在这些方面已经取得了进展,目标是使建立的人工智能系统具有合理的默认行为,以反映广泛的用户价值观。

GPT-4 通常缺乏对其绝大部分数据截止后(2021 年 9 月)发生的事件的了解,也不会从其经验中学习。它有时会犯一些简单的推理错误,这似乎与这么多领域的能力不相符,或者过于轻信用户的明显虚假陈述。有时它也会像人类一样在困难的问题上失败,比如在它生成的代码中引入安全漏洞。

GPT-4 预测时也可能出错但很自信,意识到可能出错时也不会 double-check。有趣的是,基础预训练模型经过高度校准(其对答案的预测置信度通常与正确概率相匹配)。然而,通过 OpenAI 目前的后训练(post-training)过程,校准减少了。


风险及缓解措施

OpenAI 表示,研究团队一直在对 GPT-4 进行迭代,使其从训练开始就更加安全和一致,所做的努力包括预训练数据的选择和过滤、评估和专家参与、模型安全改进以及监测和执行。

GPT-4 有着与以前的模型类似的风险,如产生有害的建议、错误的代码或不准确的信息。同时,GPT-4 的额外能力导致了新的风险面。为了了解这些风险的程度,团队聘请了 50 多位来自人工智能对齐风险、网络安全、生物风险、信任和安全以及国际安全等领域的专家,对该模型在高风险领域的行为进行对抗性测试。这些领域需要专业知识来评估,来自这些专家的反馈和数据为缓解措施和模型的改进提供了依据。

预防风险

按照 demo 视频里 OpenAI 工程师们的说法,GPT-4 的训练在去年 8 月完成,剩下的时间都在进行微调提升,以及最重要的去除危险内容生成的工作。

GPT-4 在 RLHF 训练中加入了一个额外的安全奖励信号,通过训练模型拒绝对此类内容的请求来减少有害的输出。奖励是由 GPT-4 的零样本分类器提供的,它判断安全边界和安全相关 prompt 的完成方式。为了防止模型拒绝有效的请求,团队从各种来源(例如,标注的生产数据、人类的红队、模型生成的 prompt)收集多样化的数据集,在允许和不允许的类别上应用安全奖励信号(有正值或负值)。

这些措施大大在许多方面改善了 GPT-4 的安全性能。与 GPT-3.5 相比,模型对不允许内容的请求的响应倾向降低了 82%,而 GPT-4 对敏感请求(如医疗建议和自我伤害)的响应符合政策的频率提高了 29%。


训练过程

与之前的 GPT 模型一样,GPT-4 基础模型经过训练可以预测文档中的下一个单词。OpenAI 使用公开可用的数据(例如互联网数据)以及已获得许可的数据进行训练。训练数据是一个网络规模的数据语料库,包括数学问题的正确和错误解决方案、弱推理和强推理、自相矛盾和一致的陈述,以及各种各样的意识形态和想法。

因此,当提出问题时,基础模型的回应可能与用户的意图相去甚远。为了使其与用户意图保持一致,OpenAI 依然使用强化学习人类反馈 (RLHF) 来微调模型的行为。请注意,该模型的能力似乎主要来自预训练过程 ——RLHF 不会提高考试成绩(甚至可能会降低它)。但是模型的控制来自后训练过程 —— 基础模型甚至需要及时的工程设计来回答问题。

GPT-4 的一大重点是建立了一个可预测扩展的深度学习栈。主要原因是,对于像 GPT-4 这样的大型训练,进行广泛的特定模型调整是不可行的。团队开发了基础设施和优化,在多种规模下都有可预测的行为。为了验证这种可扩展性,他们提前准确地预测了 GPT-4 在内部代码库(不属于训练集)上的最终损失,方法是通过使用相同的方法训练的模型进行推断,但使用的计算量为 1/10000。


现在,OpenAI 可以准确地预测在训练过程中优化的指标(损失)。例如从计算量为 1/1000 的模型中推断并成功地预测了 HumanEval 数据集的一个子集的通过率:


有些能力仍然难以预测。例如,Inverse Scaling 竞赛旨在找到一个随着模型计算量的增加而变得更糟的指标,而 hindsight neglect 任务是获胜者之一。GPT-4 扭转了这一趋势。


能够准确预测未来的机器学习能力对于技术安全来说至关重要,但它并没有得到足够的重视,OpenAI 表示正在投入更多精力开发相关方法,并呼吁业界共同努力。

OpenAI 表示正在开源 OpenAI Evals 软件框架,它被用于创建和运行基准测试以评估 GPT-4 等模型,同时可以逐样本地检查模型性能。

ChatGPT 直接升级至 GPT-4 版

GPT-4 发布后,OpenAI 直接升级了 ChatGPT。ChatGPT Plus 订阅者可以在 chat.openai.com 上获得具有使用上限的 GPT-4 访问权限。

要访问 GPT-4 API(它使用与 gpt-3.5-turbo 相同的 ChatCompletions API),用户可以注册等待。OpenAI 会邀请部分开发者体验。

获得访问权限后,用户目前可以向 GPT-4 模型发出纯文本请求(图像输入仍处于有限的 alpha 阶段)。至于价格方面,定价为每 1k 个 prompt token 0.03 美元,每 1k 个 completion token 0.06 美元。默认速率限制为每分钟 40k 个 token 和每分钟 200 个请求。

GPT-4 的上下文长度为 8,192 个 token。OpenAI 还提供了 32,768 个 token 上下文(约 50 页文本)版本的有限访问,该版本也将随着时间自动更新(当前版本 gpt-4-32k-0314,也支持到 6 月 14 日)。定价为每 1K prompt token 0.06 美元和每 1k completion token 0.12 美元。


以上,就是今天 OpenAI 关于 GPT-4 的所有内容了。令人不满的一点是,OpenAI 公开的技术报告中,不包含任何关于模型架构、硬件、算力等方面的更多信息,可以说是很不 Open 了。

不管怎样,迫不及待的用户大概已经开始测试体验了吧。


最后,也想问一下读者,看完 GPT-4 的发布,你有何感想。
参考内容:https://openai.com/product/gpt-4



码上报名

2023第六届无人驾驶及智能驾舱中国峰会,5月11-12日,上海




码上报名

AutoSec 7周年年会暨中国汽车网络安全与数据安全合规峰会,5月11-12日,上海


更多文章

智能网联汽车信息安全综述

华为蔡建永:智能网联汽车的数字安全和功能安全挑战与思考

汽车数据合规要点

车载以太网技术发展与测试方法

车载以太网防火墙设计

SOA:整车架构下一代的升级方向

软件如何「吞噬」汽车?

汽车信息安全 TARA 分析方法实例简介

汽车FOTA信息安全规范及方法研究

联合国WP.29车辆网络安全法规正式发布

滴滴下架,我却看到数据安全的曙光

从特斯拉被约谈到车辆远程升级(OTA)技术的合规

如何通过CAN破解汽

会员权益: (点击可进入)谈思实验室VIP会员


END

微信入群

谈思实验室专注智能汽车信息安全、预期功能安全、自动驾驶、以太网等汽车创新技术,为汽车行业提供最优质的学习交流服务,并依托强大的产业及专家资源,致力于打造汽车产业一流高效的商务平台。

 

每年谈思实验室举办数十场线上线下品牌活动,拥有数十个智能汽车创新技术的精品专题社群,覆盖BMW、Daimler、PSA、Audi、Volvo、Nissan、广汽、一汽、上汽、蔚来等近百家国内国际领先的汽车厂商专家,已经服务上万名智能汽车行业上下游产业链从业者。专属社群有:信息安全功能安全自动驾驶TARA渗透测试SOTIFWP.29以太网物联网安全等,现专题社群仍然开放,入满即止。


扫描二维码添加微信,根据提示,可以进入有意向的专题交流群,享受最新资讯及与业内专家互动机会。


谈思实验室,为汽车科技赋能,推动产业创新发展!

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 202浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 112浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 136浏览
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 107浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 87浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 113浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 165浏览
  •                                                窗        外       年底将近,空气变得格外寒冷,估计这会儿北方已经是千里
    广州铁金刚 2024-12-23 11:49 45浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 89浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 102浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 160浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦