DoIP基础知识

谈思汽车 2023-03-15 11:00

点击上方蓝字谈思汽车

获取更多汽车网络安全资讯



01 概述


所谓的DoIP其实就是基于以太网的通讯协议对UDS协议的数据进行传输,即Diagnostic communication over Internet Protocol。其本身也是一种协议,规范于ISO13400标准。由于DoIP可以传输大量数据,以及响应速度快,且可以通过以太网进行远程诊断,因此DoIP逐步成为代替传统的CAN等总线方式,成为车载网络诊断的必然趋势。


DoIP在车载领域的应用首先汽车系统的整体框架要能够支持DoIP,正因为车载以太网的快速发展,相较于传统的车载系统,目前的车载系统的整体框架都会加入一层DoIP协议层,在TCP/IP之上。并且为了更好的配合OBD诊断,远程诊断,FOTA等等技术,对整体的车载架构进行了调整,利用swich将MPU,MCU,其它以太网ECU统统通过以太网进行连接,并对外网与内网进行隔离。

当然,DoIP并不仅仅只是UDS的载体,虽然在ISO13400标准中内容不多,但是它也有自己的一些逻辑,不可能说在TCP/IP之上加了一层封装就完成了自己的任务,这样的话安全性就没有保证了,毕竟车载以太网通过网络能够将车内与车外进行网络的连接,而DoIP又是诊断的入口,这个门口如果不好好看住,会存在安全性的问题的。

简单的说,DoIP能够进行车辆发现,状态查询,路由激活(
含安全认证),诊断数据收发,这些内容将在后续进行详细的展开。

有了DoIP,那么UDS的数据传输就可以搭载在DoIP之上,并在DoIP前序逻辑都OK的情况下,进行UDS的传输。当然DoIP之上也可以不搭载UDS数据,这属于客户定制,能够满足以太网传输的一些其它特殊需求。


02 DoIP的网络拓扑


在ISO13400-2中有如下一张图,比较具有代表性,我们本文主要就根据此网络拓扑图来介绍DoIP的网络拓扑



从图中不难看出,整车的网络拓扑被分为了两个部分,即内部网络和外部网络,图中的network node可以默认为支持以太网连接的某个节点,如,雷达,摄像头等,但是不支持DoIP协议,不过大家可以对名称中含有DoIP前缀的节点进行网络分析。从图中我们很容易看出DoIP的网络拓扑有以下几个角色组成,


1.External test equipment


此部分为外部测试设备,通常为OBD诊断仪或者其他诊断客户端


2. DoIP edge node gateway


此部分和DoIP gateway有什么区别?其实没什么区别,唯一的区别就是多了个使能线的判断,从图中可以看出External test equipment和DoIP edge node gateway之间有一条线叫做Activation line。那么这条线的功能就是对协议栈进行使能作用的,当然External test equipment和DoIP edge node gateway之间不只是Activation line相连的,这个图只是功能示意图,少了很多细节,其实是通过标准的OBD-II接头相连的,其中一个针脚就是Activation line。具体可以看ISO 13400-4的介绍。


回过来,这个角色的作用是什么?


首先它是个gateway,作为一个网关它的子网内挂载着若干ECU,与DoIP gateway一样


其次它是车内网与车外网交互的一个入口,具有控制着DoIP协议栈是否工作的一个开关功能。


该角色可以同时支持Server端和Client端,Server好理解,测试设备可以诊断该网关下的某个ECU节点。那么Client端是怎么回事呢?想象一下,如果DoIP edge node gateway作为入口,那么怎样和内部其它子网的DoIP ECU进行交互呢?当然是由DoIP edge node gateway进行转发。这只是其中一个应用场景,当进行转发的时候会进行身份切换,即由Server端切换到Client端。另外一个场景是OTA升级,DoIP edge node gateway的应用层可以跑一个OTA客户端程序,进行对内网ECU的诊断及刷写,此时就是一个Client身份。


3. DoIP gateway


DoIP gateway与角色二 DoIP edge node gateway区别不是很大。实际的应用场景通常会让MCU充当这个角色,而MPU充当DoIP edge node gateway的角色,也有反过来的情况,那么该角色通常单单的跑Server端程序。


4. DoIP node


该角色很好理解,对支持以太网连接的同时支持DoIP协议的ECU认为是DoIP node。


该角色通常单单的跑Server端程序。


整个车辆网络由四个角色组成,外部测试设备作为客户端,对车内网的各个支持DoIP协议栈的ECU进行诊断。(部分CAN ECU通常挂载在MCU上,由MCU进行DoIP转DoCAN的路由)车外网的外部测试设备通过OBD-II与车内网的edge gateway进行通信,edge gateway用来使能车内网的DoIP功能。在路由打通后,发送的诊断数据根据目的地址的不同分别流向车内网的不同ECU。


03 DoIP的接收方式和协议格式


3.1 端口


从DoIP名字可以看出,该协议是在TCP/IP之上的,那么要想接收DoIP协议的报文,协议书规定需要监听一个专门分配给DoIP协议栈使用的端口号即13400,UDP,TCP都要监听此接受端口,而发送端口是在一个范围内的随机值[49152~65535],当然代码中协议栈要对对端的发送端口进行缓存,用于回送数据。


指定了端口号,客户端和服务端可以在此端口上进行收发数据。那么对该端口收到的数据是否真的是DoIP报文,就行对该网络报文进行解析。(有可能是网络攻击,有可能是其它应用恰好使用了该端口号


对收到的报文进行解析,就涉及到DoIP协议的构成,只有符合该写一点规范才认为是合法有效的DoIP报文。


3.2 协议格式


DoIP报文由协议头(header)+ 负载(payload)组成

协议头[8 byte]由下面四个字段组成



Protocol version [1 byte]


Inverse protocol version [1 byte]


Payload type [2 byte]


Payload length [4 byte]


负载[N byte] 根据实际的payload type,负载数据会不同


3.3Protocol version与Inverse protocol version


通常Protocol version为0x02,目前0x02以上的值目前是reserved状态

Inverse protocol version是Protocol version的取反的值,此例0x02去反后为0xFD


协议书上特别说明了Protocol version可以为0xFF,设这个值的作用是,当客户端和服务端的协议版本不匹配,可以设置此值绕过协议头版本不匹配而拒绝请求的case。


3.4 Payload type


payload type可以代表DoIP协议栈所能支持的功能,列举如下(特意分开了Server支持的type及Client支持的type


DoIP SERVER


DoIP Client


如上分开描述,是因为在代码实现上,可以将逻辑拆分。


即Server端只关心自己支持的payload type,客户端只关心自己支持的payload type,不支持的可以忽视掉。有利于模块拆分及组合,有利于实现上一节所讲个各个角色,将来通过配置文件的配置,来表示不同的角色。


3.5 Payload length


payload length这里分配了4字节,也就是所DoIP报文最大传输4 GB /4294967295 bytes,即0xFFFFFFFF。它只是个允许的范围,通常来说通过DoIP进行诊断也就几字节到几十字节,而升级通常ECU的升级包也就几MB。所以4 GB只是个理论上限。

该值可以做长度的有效性验证,因为除了诊断数据,其它payload type都是有固定长度的。


还可以做什么?其实做开发时还要考虑遇到如下情况该怎么处理


1. 数据粘连


2. 数据截断


3. 异常的超大size


4. 超过协议栈可以处理size


3.6 Payload


这里的负载是指的是DoIP协议的负载,当然当Payload type为诊断类型时,其负载除了DoIP自身的内容,


还包含了UDS数据,供上层UDS模块进行进一步的解析。


因为每个Payload type负载都不同,这里不做解释,在后续功能章节,进行详细的介绍


04 DoIP诊断启动与使用


4.1 连接建立


DoIP实体内管理着一个DoIP connection table ,用来记录和维护诊断通信的逻辑连接。上图就是这个表中的一个元素,即一个逻辑连接的状态机。上图中的方框就是连接所处的状态,[Step]是状态之间跳转时发生的事情。


[Step1] 当一个新的套接字建立,逻辑连接的状态就从“listen”跳转到“socket initialized”,同时启动一个定时器, initial inactivity timer。


[Step2] 当DoIP实体接收到tester发来的一个routing activation信息后,逻辑连接的状态就从“socket initialized”跳转到“Registered [Pending for Authentication]” ,此时 initial inactivity timer被停止,启动一个名为general inactivity timer的定时器。


[Step3] 在完成Authentication之后,逻辑连接的状态就从“Registered [Pending for Authentication]”跳转到“Registered [Pending for Confrmation]” 。


[Step4] 在完成Confrmation之后,逻辑连接的状态就从“Registered [Pending for Confrmation]”跳转到“Registered [Routing Active] ” 。


[Step5] 如果initial timer 或general inactivity timer 过期后仍没收到后续请求,或者authentication 和 confrmation 被拒绝了,又或者外部测试设备对alive check 消息没有响应,则逻辑连接进入“Finalize”状态。


[Step6]进入Finalize后,此时TCP套接字将被关闭,并重新回到“listen”状态。


4.2 车辆发现



当DoIP实体和外部测试设备都连接到一个网络中时,它们会利用DHCP协议获得一个属于自己的IP地址。在网络中,路由器作为DHCP server,为新加入到该网络中的设备分配IP地址。在获取IP地址之后,有两种车辆发现的方法,如上图所示。一种方法是车辆主动上报自己的信息3次。如果测试设备没有收到车辆主动上报的信息,则会发送一个identification request,如果网络中有车辆的话,车辆对这个请求进行响应,测试设备便发现了被测车辆。


4.3 会话建立



在诊断仪发现车辆之后,会把车辆添加到自己的车辆列表中。当用户选择这个列表中的某辆车,如果连接建立成功,用户就可以对车辆进行诊断了。


接下来用户给汽车发出诊断信息,网关会根据信息接收对象把诊断信息转发给网络中相关的ECU,当得到ECU 的响应之后,网关再把最终的响应发送给诊断仪。当用户选择退出时,用于DoIP通信的这个套接字就被关闭了。


下图是一个DoIP数据完整结构的数据举例:


DoIP数据完整结构举例


byte 0:ISO13400 版本


byte 1:ISO13400 版本逐比特取反


byte 2~3:数据类型,0x8001,表明这是一个诊断信息的数据包


byte 4~7:数据长度,在这个例子中的值是7,表示后面有7个字节的数据


byte 8~9:源地址


byte 10~11:目的地址


byte 12~13:具体的诊断命令,SID是22,表示读取,DID是0xF8 10


这个数据段作为SDU传递给下层协议,逐层封装成为完整的以太网帧发送出去。

来源:汽车电子联盟



码上报名

2023第六届无人驾驶及智能驾舱中国峰会

5月11-12日,上海



码上报名

AutoSec 7周年年会暨中国汽车网络安全与数据安全合规峰会,5月11-12日,上海


谈思汽车社群目前已覆盖


自动驾驶、信息安全、网络安全、车联网……

谈思汽车 智能汽车安全新媒体
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦