无创测血糖,AppleWatch用了什么技术

传感器技术 2023-03-14 07:00
 

 




导语


血糖也能无创测试?“糖友”们终于能摆脱每天扎针了吗?




据外媒报道,苹果目前在无创血糖监测技术取得突破性进展,未来将在Apple Watch上搭载该功能。据了解,这个项目被称为E5,研究的主要目标就是在不刺破皮肤取血的情况下,测量人体血液中葡萄糖含量。


知情人士称,血糖监测系统将依赖苹果设计的硅光芯片和传感器,苹果开发的这种硅光子芯片,通过收集激光照射到皮肤后传回的光学吸收光谱,来确定体内的葡萄糖浓度。


是不是感觉这种测量方法很熟悉?事实上,这种通过激光照射并收集反射光谱来测量血液中物质的方式,已经在无创测量血氧含量上广泛应用了。通过对血氧仪的拆解,我们可以看到,这种设备的整体技术含量并不高,而且目前市面上在售的运动手环或手表都已经具备血氧检测功能。为什么无创测血糖的功能始终没能实现呢?


 

我们是怎么测血糖的


图源 | Diabetes.co.uk


目前市场上已经普及的测量血糖的方式有以下几种:血液采样、连续检测、尿液检测以及唾液检测


血液检测即最常见的扎针式检测方式,通过使用针头或细微的刺激,穿刺皮肤并采集一滴血液样本进行测量。通常需要使用便携式血糖仪或在实验室中使用更高精度的设备进行分析,其中便携式血糖仪需要搭配特殊试纸使用。目前血液检测的方法也分两种,电化学法与光化学法。


电化学法的试纸中含有导电涂层,试纸吸收血液后,血中的葡萄糖就会和固定在试纸表面的葡萄糖氧化酶(或是葡萄糖脱氢酶)和铁氰化钾反应,产生葡萄糖酸和亚铁氰化钾。这种化学反应会产生电流,血糖仪会检测氧化反应电流大小,最终转化成葡萄糖浓度读数。


光化学法是通过检测试纸的颜色变化反应来测血糖的,试纸上的特殊酶与葡萄糖反应产生某种颜色中间产物,血糖仪检测试纸表面的反射光情况来判断血糖浓度。


连续检测法(动态血糖监测仪动态血糖监测系统,CGMS)本质上是将血糖传感器植入到皮下组织中,监测周边组织液中的血糖含量。该项技术可通过在小臂上粘贴一个小型柔性传感器,粘贴时触及皮肤那一面上的柔性微型探针会植入皮下层中,通常可连续检测血压14天左右。这种方式可以记录长时间的血糖变化曲线,帮助患者实时调控糖分摄入。


唾液检测与尿液检测是通过各大医院的专业检测设备检测,尽管这种方法非常便捷,但目前还没有商用的唾液检测设备。


可以看到,目前只要是可以方便测量血糖的方式,都离不开“扎针”,即有创检测。据上海交通大学医学院发表的文章《新冠疫情下糖尿病患者的自我管理》显示,1型糖尿病患者血糖水平有非常大的波动,一天之中需要接受4-5次的血糖监测,其中一星期中至少有一天进行半夜(凌晨3点)的血糖监测。2型糖尿病患者的血糖水平较1型相对稳定,虽然不需要像1型那样频繁监测,但仍需每周测一次,其中对低血糖不敏感的病人仍需每天测量4次。


然而现有的血糖检测设备还不能同时满足无痛、频繁检测、实时、廉价的要求。动辄每天4次的血糖检测,甚至要比吃饭的次数多,检测血糖已经成为糖尿病患者生活中的一项沉重的负担。即使是CGMS方式,也仍需要刺开皮肤,还存在对植入物过敏或不适、测量延迟滞后、费用高昂等问题。而且目前这类传感器还不能真正做到让人“无感”,依旧会对生活产生些许影响。湖南师范大学杨宇祥教授在论文中称,微创血糖检测技术只是现阶段传统有创血糖检测技术的一个有益补充,是无创血糖检测技术成功之前的一个过渡方案。


所以,无创测血糖的方式才能一出现,就引起人们的热烈讨论。而且传感器可以集成在智能手表中,时刻测量也不会对日常生活产生影响。能给患者带来如此方便的无创测血糖方式,为什么还没有出现?它的技术难点在哪?


 

无创技术关键在传感器


图源 | DiaTribe


这里先抛出结论,目前无创测血糖技术的最大阻碍就是精确度,换句话说,目前我们依旧需要在传感器方面有所突破。


阅读分析测试学报2022年4月发布的《无创血糖检测技术研究进展》论文,我们可以看到目前无创测量血糖的方式大致能分为光学类无创血糖检测方法与非光学类无创血糖检测方法两大类,以下我们简称光学法与非光学法。


光学法通常是将一束光聚焦在人体上,利用传输光的强度、相位、偏振角、频率以及靶区组织散射系数等信息与血糖浓度密切相关的特点,通过提取这些信息的改变间接测得血糖浓度。根据光波波长和作用机理不同,光学法又可以分为近/中红外光谱法、拉曼光谱法、光声光谱法、光学相关层析成像法、光学旋光法以及荧光光谱法等。这里介绍比较容易理解的测试方法。


近/中红外光谱法(NIRS)。这种方法与血氧仪非常相似,传感器技术较成熟,价格很低。该技术是利用葡萄糖分子在近红外区域(波长750-2500nm)或中红外区域(波长2500-10000nm)具有的吸收和散射特性,用现代计量手段建立血糖浓度与反射红外光谱的回归模型来对血糖进行检测。不过这种方法有几个待解决问题。首先是生物体内的水、蛋白质、脂肪等成分与葡萄糖的吸收峰存在重叠,不容易检测;其次,人体血糖水平变化引起的信号变化十分微弱,回波信噪比较低;最后,这种测试方式对测试环境有较高要求,测量部位的温度、湿度、光线入射角度都会影响结果。


拉曼光谱法(RS)是红外光的替代技术。根据激光作用于被测物时形成的拉曼散射与瑞利散射之间的频率差(拉曼位移)来确定物质的分子结构,进而测定不同物质的成分。与红外光谱相比,RS谱峰更清晰尖锐。然而传统的RS传感器体积很大,费用很高,不便于携带。且RS传感器在信号采集过程中稳定性较差,需要技术的进一步突破。其他光学检测方法,要么有相同缺点,要么就是测量结果不准。


非光学法包括代谢热整合法、微波检测法、电磁检测法、血液替代物测定法、生物电阻抗谱测量法、人体成分分析法等。其中生物电阻抗谱(Bioimpedance spectroscopy,BIS)通过监测细胞上的电阻抗谱或人体整体导电性来推导血糖含量,该技术与目前的体脂测量方法近似,技术成熟度较高。总结来说,非光学法就是通过测量人体内热量、葡萄糖相位或电特性来推导出血液中的葡萄糖浓度,或是测量人体内血糖相关物质或物理特性来间接推导血糖含量。然而无论是哪种方法,也都不同程度的面临着测量困难、信号模糊、相关性不足的问题。


记者认为,当前最有可能实现的方式是拉曼光谱法(RS)与生物电阻抗谱(BIS)法。这两种测量方法精度较高,有较为成熟的技术积累,在传感器技术有所突破后就能快速商用。当然,Apple Watch也极有可能使用红外光谱技术,这种技术方案成本最低,在血氧检测方案上稍加改动即可应用。


 

无创血糖检测

没那么容易应用


图源 | 网络


总结一下,目前无创血糖仪仍面临以下技术难点:


光学测量的误差:


若使用光学传感器来测量皮肤下组织的血糖变化,皮肤组织的厚度、颜色、水分含量和脂肪等因素都可能影响光学测量的准确性。

信号处理的复杂性:


设备需要从多种噪声信号中提取出有效的葡萄糖信号,这需要使用复杂的信号处理技术。

个体差异:


人们的身体构造和生理状况各不相同,因此在研发无创血糖仪时需要考虑到个体差异的影响。

数据分析的准确性:


对于无创血糖监测设备来说,收集到的数据需要进行准确的分析和解释。这需要充分考虑到人体生理变化、运动和饮食等因素对血糖水平的影响。


虽然无创血糖监测技术已经在研究和开发中,但是目前还没有一种可靠和准确的商用无创血糖监测设备。目前记者能在网上搜到部分声称可以无创测量血糖的检测仪,但使用风评不高。有知乎用户评论说:“此类设备使用前需要输入基准值,此后的血糖波动完全依靠算法计算,在基准值上上下波动。”“这种产品精准度非常差,测试好几天发现没有任何敏锐性可言。”甚至有人认为这类产品应该作为玩具销售,而不是保健设备。


更重要的一点是,血糖检测关乎性命。对于血氧仪来说,测量结果仅可作为参考,可以大致分辨被测试人是否处于健康状态。而血糖的浓度与当天被测人的状态直接相关,患者需要准确的血糖值来判断服药剂量。因此,国家对此类技术的批准将更加严格。我国最新公布的GBT 19634-2021国家标准指出,当测量值<100 mg/dL(5.55 mmol/L)时,允许偏差不超过±15 mg/dL(0.83 mmol/L);当测量值≥100 mg/dL,允许误差范围不超过±15%;该国标预计将于今年实施。国标的要求如此严格,它的实施不仅将使血糖检测领域面临全面"洗牌",也直接提高了这条赛道的准入门槛。


随着人们对健康意识的提高,无创血糖检测设备作为一种新型检测技术,具有着广阔的应用前景。当前的无创血糖检测技术已经有了一些进展,例如基于声音、光学、电化学等方法进行的研究,但这些技术目前仍然存在着一些技术难点和实际应用问题。本次Apple Watch将搭载无创血糖检测的消息对于患者来说算是相当大的好消息,然而具体使用情况,还需要交由市场评判。


 来源:与非网

  

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 118浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 333浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 451浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 540浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 96浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 516浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 519浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 466浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 75浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 205浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 480浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 502浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦