eBPF指令集规范v1.0

原创 Linux阅码场 2023-03-06 08:01

金庆辉,系统工程师,对系统性能分析领域有强烈的兴趣。

版权说明:本文档翻译自官方文档,额外加入了自己的一些理解。

目的:编译成功的eBPF程序,加载时偶尔会过不了内核BPF verifier,冒出一堆汇编语句。理解eBPF指令集,可以帮助我们调试这类问题。

1. eBPF指令集规范v1.0

本文档是eBPF指令集规范,版本 1.0

1.1 寄存器和使用规范

eBPF有10个通用寄存器和一个只读的栈帧寄存器,他们都是64-bit宽度。

eBPF的寄存器使用规范为:

  • R0: 保存函数返回值和eBPF程序退出值。

  • R1 - R5: 用于函数调用参数。

  • R6 - R9: callee函数负责进入时保存这几个寄存器到栈中,函数退出前再恢复寄存器原有值。(callee saved registers that function calls will preserve)

  • R10: 只读的栈帧寄存器,用于访问栈。

R0 - R5是临时寄存器,eBPF程序如果希望在函数调用后寄存器值不变,需要自己保存和恢复寄存器。(R0 - R5 are scratch registers and eBPF programs needs to spill/fill them if necessary across calls.)

译者注:

  • Scratch register / temporary register:顾名思义,用于保存临时值或者中间值。

  • Caller 和 Callee: A函数中调用B函数,那么 A是Caller,B是Callee。

  • Caller saved registers 和 Callee saved registers

Caller saved registers(AKA volatile registers, or call-clobbered)Callee saved registers(AKA non-volatile registers, or call-preserved)
Caller函数负责保存和恢复寄存器(也可以不保存和恢复)Callee函数负责保存和恢复寄存器,这样寄存器的值在子函数调用后不会改变

更多资料

1.2 指令编码

eBPF有两种编码模式:

  • 基础编码,64bit固定长度编码。

  • 宽指令编码,在基础编码后增加了一个64bit的立即数(imm64)。这样指令为128bit。

基础编码格式,每一列约定为field

32 bits (MSB,最高bit位)16 bits4 bits4 bits8 bits (LSB,最低比特位)
imm32(立即数)off16(偏移)src_reg(源寄存器)dst_reg(目的寄存器)opcode(操作码)

注意:绝大多数指令不会使用所有的field,不使用的field被置0。

宽指令编码目前只有64-bit立即数指令使用。

1.2.1 指令类型(class)

基础编码中的fieldopcode,一共8bit,其中最低位3bit用来保存指令类型:

classvaluedescriptionreference
BPF_LD0x00只能用于宽指令,从imm64中加载数据到寄存器Load 和 store指令
BPF_LDX0x01从内存中加载数据到dst_regLoad 和 store指令
BPF_ST0x02imm32数据保存到内存中Load 和 store指令
BPF_STX0x03src_reg寄存器数据保存到内存Load 和 store指令
BPF_ALU0x0432bit算术运算算术和跳转指令
BPF_JMP0x0564bit跳转操作算术和跳转指令
BPF_JMP320x0632bit跳转操作算术和跳转指令
BPF_ALU640x0764bit算术运算算术和跳转指令

1.3 算术和跳转指令

(BPF_ALU, BPF_ALU64, BPF_JMP和BPF_JMP32)称为算术和跳转指令。8bit的opcode被分为3个部分:

4 bits (MSB,最高bit位)1 bit3 bits (LSB,最低bit位)
operation codesource指令类型(BPF_ALU, BPF_ALU64, BPF_JMP或BPF_JMP32)

第4个bit(source)含义:

sourcevaluedescription
BPF_K0x00使用32-bitimm32作为源操作数
BPF_X0x08使用源寄存器(src_reg)作为源操作数

4个bit的operation code用来存储具体指令操作码。

1.3.1 算术指令(BPF_ALU, BPF_ALU64)

BPF_ALU操作数为32bit,BPF_ALU64操作数为64bit。4个bit的operation code编码了如下操作:

operation codevaluedescription
BPF_ADD0x00dst += src
BPF_SUB0x10dst -= src
BPF_MUL0x20dst *= src
BPF_DIV0x30dst /= src
BPF_OR0x40dst |= src
BPF_AND0x50dst &= src
BPF_LSH0x60dst <<= src
BPF_RSH0x70dst >>= src
BPF_NEG0x80dst = ~src
BPF_MOD0x90dst %= src
BPF_XOR0xa0dst ^= src
BPF_MOV0xb0dst = src
BPF_ARSH0xc0算术右移操作。对于负数,右移会在左边最高位补上右移次数个1,对于正数则补0
BPF_END0xd0字节的swap操作

译者注:

  • 上表中dst一定是指目的寄存器,不支持内存地址。

  • 上表中src可能是源寄存器,也可能是imm32,根据source位(BPF_K或者BPF_X)来区分。

  • eBPF寄存器都是64bit,根据操作数类型,可以使用全部64bit,也可以只使用其中32bit。

一些例子:

BPF_ADD | BPF_X | BPF_ALU :

dst_reg = (u32) dst_reg + (u32) src_reg;

BPF_XOR | BPF_K | BPF_ALU64 :

dst_reg = dst_reg + src_reg

BPF_XOR | BPF_K | BPF_ALU :

dst_reg = (u32) dst_reg ^ (u32) imm32

BPF_XOR | BPF_K | BPF_ALU64 :

dst_reg = dst_reg ^ imm32

1.3.1.1 字节swap指令

字节swap指令,属于BPF_ALU分类,操作码为BPF_END。
字节swap指令操作数只有dst_reg,不操作src_regimm32

opcode中的source位含义现在更改为:

sourcevaluedescription
BPF_TO_LE0x00主机字节序到小端字节序
BPF_TO_BE0x08主字节序序到大端字节序

基础编码格式中的imm32,此时编码了swap操作的位宽。支持:16,32和64bit。
例子:

BPF_ALU | BPF_TO_LE | BPF_END,并且imm32 = 16:

dst_reg = htole16(dst_reg)

BPF_ALU | BPF_TO_LE | BPF_END,并且imm32 = 64:

dst_reg = htole64(dst_reg)

1.3.2 跳转指令(BPF_JMP32, BPF_JMP)

操作数为寄存器,BPF_JMP32使用32bit,BPF_JMP使用64bit,其它行为都一样。operation code含义如下:

operation codevaluedescriptionnotes
BPF_JA0x00PC += off仅用在BPF_JMP中
BPF_JEQ0x10PC += off if dst == src
BPF_JGT0x20PC += off if dst > srcunsigned
BPF_JGE0x30PC += off if dst >= srcunsigned
BPF_JSET0x40PC += off if dst & src
BPF_JNE0x50PC += off if dst != src
BPF_JSGT0x60PC += off if dst > srcsigned
BPF_JSGE0x70PC += off if dst >= srcsigned
BPF_CALL0x80函数调用
BPF_EXIT0x90函数或者程序返回仅用在BPF_JMP分类中
BPF_JLT0xa0PC += off if dst < srcunsigned
BPF_JLE0xb0PC += off if dst <= srcunsigned
BPF_JSLT0xc0PC += off if dst < srcsigned
BPF_JSLE0xd0PC += off if dst <= srcsigned

eBPF程序在调用BPF_EXIT前,需要把返回值保存在R0寄存器中。

译者注: 上表中的术语:

  • PC:程序计数器。

  • off: 基础编码格式中的off16

  • src,dst: 都是指的寄存器的值。

1.4 Load 和 Store指令

BPF_LD, BPF_LDX, BPF_ST和BPF_STX指令类型中,8bit的opcode含义为:

3 bits (MSB)2 bit3 bits (LSB)
modesize指令类型(BPF_LD, BPF_LDX, BPF_ST或BPF_STX)

mode含义是:

modevaluedescriptionreference
BPF_IMM0x0064bit立即数指令64bit立即数指令
BPF_ABS0x20经典BPF数据包访问(直接)经典BPF数据包访问指令
BPF_IND0x40经典BPF数据包访问(间接)经典BPF数据包访问指令
BPF_MEM0x60标准load和store操作标准load和store指令
BPF_ATOMIC0xc0原子操作原子操作

size含义:

sizevaluedescription
BPF_W0x00字长(4字节)
BPF_H0x08半字长(2字节)
BPF_B0x010字节(1字节)
BPF_DW0x18双字长(8字节)

1.4.1 标准load和store指令

BPF_MEM代表了标准load和store指令,这些指令用于寄存器和内存之间传递数据。

BPF_MEM | | BPF_STX

*(size *) (dst_reg + off16) = src_reg

BPF_MEM | | BPF_ST:

*(size *) (dst_reg + off16) = imm32

BPF_MEM | | BPF_LDX

dst_reg = *(size *) (src_reg + off16)

size 可选值:BPF_B, BPF_H, BPF_W, or BPF_DW

1.4.2 原子操作

原子操作,指的的是对内存的操作,不会被其他eBPF程序中途扰乱。

eBPF所有的原子操作由BPF_ATOMIC指定,例如:

  • BPF_ATOMIC | BPF_W | BPF_STX :32-bit原子操作。

  • BPF_ATOMIC | BPF_DW | BPF_STX :64-bit原子操作。

  • 8-bit和16-bit原子操作不支持。

基本编码格式的imm32用来编码真正的原子操作, 以下是简单原子指令

imm32valuedescription
BPF_ADD0x00原子加
BPF_OR0x40原子或
BPF_AND0x50原子与
BPF_XOR0xa0原子异或

BPF_ATOMIC | BPF_W | BPF_STXimm32 = BPF_ADD,含义:

*(u32 *)(dst_reg + off16) += src_reg

BPF_ATOMIC | BPF_DW | BPF_STXimm32 = BPF_ADD, 含义:

*(u64 *)(dst_reg + off16) += src_reg

除了以上比较简单的原子操作,还有2个复杂原子指令

imm32valuedescription
BPF_XCHG0xe0|BPF_FETCH原子交换,交换src_reg(dst_reg + off16)指向内存的值
BPF_CMPXCHG0xf0|BPF_FETCH原子CAS.if (*(uXX*)(dst_reg + off16) == R0) { *(uXX*)(dst_reg + off16) = (src_reg) }; 无论是否交换成功,R0都会保存(dst_reg + off16)指向内存的被修改前的原始值。如果是32bit操作数,那么用会0补齐高位后再保存到R0。

BPF_FETCH:

imm32valuedescription
BPF_FETCH0x01代表需要返回旧值
  • 对于简单原子指令是可选的,如果设置了,src_reg将保存(dst_reg + off16)指向的内存中被修改前的原始值。

  • 对于复杂原子指令是必选的。

1.4.3 64bit立即数指令

modeBPF_IMM的指令,用于eBPF宽指令,有额外的一个imm64值。
目前只有一条指令:
BPF_LD | BPF_DW | BPF_IMM,含义为:
dst_reg = imm64

1.4.4 经典BPF数据包访问指令

eBPF之前为了兼容经典BPF,引入了一些访问数据包的指令。现在已经废弃不再使用。


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 118浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 151浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 117浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 0浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 111浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 92浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 202浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 202浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 88浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 148浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 165浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦