电子设计竞赛(4)-常用的两种PID算法

大鱼机器人 2020-06-24 00:00

公众号关注 “大鱼机器人

设为 “星标”,重磅干货,第一时间送达!


1. 什么是PID

PID 控制器以各种形式使用超过了 1 世纪,广泛应用在机械设备、气动设备 和电子设备.在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法

PID 实指“比例 proportional”、“积分 integral”、“微分 derivative”,这三项构 成 PID 基本要素。每一项完成不同任务,对系统功能产生不同的影响。

它的结构简单,参数易 于调整,是控制系统中经常采用的控制算法。

PID:比例单元(P)、积分单元(I)和微分单元(D)组成

▲ PID 控制框图

PID控制公式:
其中:u(t)为控制器输出的控制量;(输出)
e(t)为偏差信号,它等于给定量与输出量之差;(输入)
KP 为比例系数;(对应参数 P)
TI 为积分时间常数;(对应参数I)
TD 为微分时间常数。(对应参数 D) 

数字 PID 控制算法因时间离散化不同,通常分为位置式 PID 控制算法和增量式 PID 控制算法。  

2. 位置式 PID 算法 
                    
e(k): 用户设定的值(目标值) -  控制对象的当前的状态值 
比例P :    e(k)
积分I :   ∑e(i)     误差的累加(包括e(k))
微分D :  e(k) - e(k-1)  这次误差-上次误差

也就是位置式PID是当前系统的实际位置,与你想要达到的预期位置的偏差,进行PID控制。

因为有误差积分 ∑e(i),一直累加,也就是当前的输出u(k)与过去的所有状态都有关系,用到了误差的累加值;(误差e会有误差累加),输出的u(k)对应的是执行机构的实际位置,,一旦控制输出出错(控制对象的当前的状态值出现问题 ),u(k)的大幅变化会引起系统的大幅变化

并且位置式PID在积分项达到饱和时,误差仍然会在积分作用下继续累积,一旦误差开始反向变化,系统需要一定时间从饱和区退出,所以在u(k)达到最大和最小时,要停止积分作用,并且要有积分限幅和输出限幅

所以在使用位置式PID时,一般我们直接使用PD控制

而位置式 PID 适用于执行机构不带积分部件的对象,如舵机和平衡小车的直立和温控系统的控制

根据公式结合代码可以很好理解
//pwm=Kp*e(k)+Ki*∑e(k)+Kd[e(k)-e(k-1)]typedef struct PID{float kp;float ki;float kd;float ek; //当前误差float ek_1; //上一次误差float ek_sum; //误差总和float limit; //限幅}PID; static PID pid;void PID_Init(){ pid.kp = 0.1; pid.ki = 0.2; pid.kd = 0.3; pid.limit = 1000; pid.ek = 0; pid.ek_1 = 0; pid.ek_sum = 0;}// 位置式PID控制float PID_Postion(int Encoder,int Target){float pwm = 0; pid.ek = Target - Encoder; // 计算当前误差 pid.ek_sum += pid.ek; //求出偏差的积分 pwm = pid.kp*pid.ek + pid.ki*pid.ek_sum +  pid.kd*(pid.ek - pid.ek_1); //位置式PID控制器 pid.ek_1 = pid.ek; //保存上一次偏差 if(pwm > pid.limit) { pwm = pid.limit; }else if(pwm < -pid.limit) { pwm = -pid.limit; }return pwm;}
有不明所以然的朋友会问,在将PID用于电机控制时,我这个PID的输入参数是编码器的数值、目标位置,我的输出PWM是个什么东西呢?

这个PWM可以是-1---+1的占空比,也可以是比较寄存器的数值,例如ARR是3000,PWM这个可以是1500,代表PWM占空比50%,那有的会问,例如我的encoder是1000,target是2000,那么pid.ek = 1000,按照pid.kp = 10计算,那么pid.kp*pid.ek = 10000,也就是说这个输出pwm如果代表占空比-1--+1的话,远远大于它的范围,那是不是这个计算或者公式有问题呢?

或者是不是pwm代表的意义不对呢?其实是没有关系的,因为按照计算10000大于1,PWM=1,那么完全按照占空比1运行,等到encoder=target时,pwm=0,电机就不再运动了,到达了目标位置;

但是这里要提醒大家,encoder与target代表编码器数值,二者的差值肯定是整数,乘以pid.kp=10之后,肯定大于1,所以PWM始终是100%占空比,这样有可能时钟无法找到目标位置,所以pid.kp=10这个参数设置就不合理,比如设置pid.kp=0.001,则encoder与target差值如果在1000以内,PWM就可能在-1--+1之间,这样才能真正的起到调节作用,所以kp的值并不是大家随意乱设,要根据控制量的实际情况、输出值的实际意义,设定参数,脱离实际意义的盲目瞎设参数反而适得其反。

3. 增量式PID

比例P :   e(k)-e(k-1)   当前误差 - 上次误差
积分I :   e(i)     当前误差   
微分D :  e(k) - 2e(k-1)+e(k-2)   当前误差 - 2*上次误差 + 上上次误差

增量式PID根据公式可以很好地看出,一旦确定了 KP、TI  、TD,只要使用前后三次测量值的偏差, 即可由公式求出控制增量。

而得出的控制量 ▲u(k)对应的是近几次位置误差的增量,而不是对应与实际位置的偏差,没有误差累加。

也就是说,增量式PID中不需要累加。控制增量Δu(k)的确定仅与最近3次的采样值有关,容易通过加权处理获得比较好的控制效果,并且在系统发生问题时,增量式不会严重影响系统的工作。

总结:
增量型 PID,是对位置型 PID 取增量,这时控制器输出的是相邻两次采样时刻所计算的位置值
之差,得到的结果是增量,即在上一次的控制量的基础上需要增加(负值意味减少)控制量。

代码实现效果如下:
//根据增量式离散PID公式 //pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)]//e(k)代表本次偏差 //e(k-1)代表上一次的偏差 以此类推 //e(k-2)代表上上次的偏差//pwm代表增量输出typedef struct PID{  float kp; float ki; float kd; float ek; //当前误差 float ek_1; //上一次误差 float ek_2; //上上一次误差 float limit; //限幅}PID;
static PID pid;
void PID_Init(){ pid.kp = 0.1; pid.ki = 0.2; pid.kd = 0.3; pid.limit = 1000; pid.ek = 0; pid.ek_1 = 0; pid.ek_2 = 0;}
// 增量式PID控制float PID_Increase(int Encoder,int Target){ float pwm = 0; pid.ek = Target - Encoder; // 计算当前误差 pid.ek_sum += pid.ek; //求出偏差的积分 pwm = pid.kp*(pid.ek - pid.ek_1) + pid.ki*pid.ek + pid.kd*(pid.ek - 2*pid.ek_1 + pid.ek_2); //增量式PID控制器 pid.ek_1 = pid.ek; //保存上一次偏差 pid.ek_2 = pid.ek_1; //保存上上一次的偏差 if(pwm > pid.limit) { pwm = pid.limit; } else if(pwm < -pid.limit) { pwm = -pid.limit; } return pwm;}


4. 增量式与位置式区别

1 增量式算法不需要做累加,控制量增量的确定仅与最近几次偏差采样值有关,计算误差对控制 量计算的影响较小。而位置式算法要用到过去偏差的累加值,容易产生较大的累加误差。 

2 增量式算法得出的是控制量的增量,例如在阀门控制中,只输出阀门开度的变化部分,误动作 影响小,必要时还可通过逻辑判断限制或禁止本次输出,不会严重影响系统的工作。而位置式的输出直接对应对象的输出,因此对系统影响较大。

3 增量式PID控制输出的是控制量增量,并无积分作用,因此该方法适用于执行机构带积分部件的对象,如步进电机等,而位置式PID适用于执行机构不带积分部件的对象,如电液伺服阀。

4 在进行PID控制时,位置式PID需要有积分限幅和输出限幅,而增量式PID只需输出限幅

位置式PID优缺点:
优点:
①位置式PID是一种非递推式算法,可直接控制执行机构(如平衡小车),u(k)的值和执行机构的实际位置(如小车当前角度)是一一对应的,因此在执行机构不带积分部件的对象中可以很好应用

缺点:
①每次输出均与过去的状态有关,计算时要对e(k)进行累加,运算工作量大。

增量式PID优缺点:
优点:
①误动作时影响小,必要时可用逻辑判断的方法去掉出错数据。
②手动/自动切换时冲击小,便于实现无扰动切换。当计算机故障时,仍能保持原值。
③算式中不需要累加。控制增量Δu(k)的确定仅与最近3次的采样值有关。

缺点:
①积分截断效应大,有稳态误差;

②溢出的影响大。有的被控对象用增量式则不太好;

5. 如何进行参数整定?

首先我们需要明确我们的控制目标,也就是满足控制系统的 3 个要求:
稳定性
快速性
准确性

具体的评估指标有最大超调量、上升时间、静差等。 

最大超调量是响应曲线的最大峰值与稳态值的差,是评估系统稳定性的一个重要指标;上升时间是指响应曲线从原始工作状态出发,第一次到达输出稳态值所需的时间,是评估系统快速性的一个重要指标;静差是被控量的稳定值与给定值之差,一般用于衡量系统的准确性,具体可以参考前文的讲解。 

在实践生产工程中,不同的控制系统对控制器效果的要求不一样。比如平衡车、倒立摆对系统的快速性要求很高,响应太慢会导致系统失控。智能家居里面的门窗自动开合系统,对快速性要求就不高,但是对稳定性和准确性的要求就很高,所以需要严格控制系统的超调量和静差。所以 PID 参数在不同的控制系统中是不一样的。只要我们理解了每个 PID 参数的作用,我们就可以应对工程中的各种项目的 PID 参数整定了。
 
一般而言,一个控制系统的控制难度,一般取决于系统的转动惯量和对响应速度的要求等。转动惯量越小、对响应速度要求越低,PID 参数就越不敏感。比如现在我们控制电机转 90°,需要严格控制超调量、和静差。但是对响应速度无要求。因为电机处于轻载的情况下,转动惯量很小,这是一个很容易完成的工作。根据上面的理论分析和实践,因为响应速度无要求,一般 P 应该给小一点,然后加大系统的阻尼防止超调,也就是 D 参数尽量大,另外因为 P 值较小,应该加入I 控制减小静差。

原文链接:https://blog.csdn.net/u014453443/java/article/details/100573722
-END-

关于比赛的帖子,之前写过很多篇:

「第一弹」电子设计大赛应该准备什么?

「第一篇」大学生电子设计竞赛,等你来提问。

「第二篇」全国一等奖,经验帖。

「第三篇」电赛,这些你必须知道的比赛细节,文末附上近十年电赛题目下载

「第四篇」电赛控制题可以准备一些什么?

「第五篇」全国电子设计竞赛-电源题设计方案总结

「第六篇」对于电赛,我们应该看重什么?

电子设计竞赛电源题(1)-电源题简介

电子设计竞赛电源题(2)-检波与采样

电子设计竞赛(三)-SPWM与PID

也有一些大神的经验贴,其实不乏国奖获得者:

全国一等奖,他的学习之路。

从0开始,三个月,获全国一等奖。

奖状是怎么炼成的—我的电赛狂魔之旅

全国一等奖的获得者,如今去当了人民教师。


也有一些关于比赛项目的文章:
参加智能车大赛还是电赛?在做电磁炮中我找到了答案
2019年电赛综合测评题详解
「权威发布」2019年电赛最全各类题目细节问题解答汇总
奖状是怎么炼成的—我的电赛狂魔之旅

【大学生电子设计竞赛分享经验贴】风力循迹小车


去年还做过几期猜题的文章,貌似有点接近了,今年还可以继续给大家猜猜。
「猜题第一篇」2019年大学生电子设计竞赛

「重磅猜题之第二篇」2019年大学生电子设计竞赛

    
          

 最 后  
 

若觉得文章不错,转发分享,也是我们继续更新的动力。
5T资源大放送!包括但不限于:C/C++,Linux,Python,Java,PHP,人工智能,PCB、FPGA、DSP、labview、单片机、等等
在公众号内回复「 更多资源 」,即可免费获取,期待你的关注~
长按识别图中二维码关注
大鱼机器人 一个专注于机器人技术,单片机,嵌入式系统,智能家居,智能设备,PCB设计,IT最新动态的自媒体。此外,还有海量学习资源等你来领取。作者:张巧龙,个人微信号:well_xiaolong。欢迎关注公众号,名称:大鱼机器人,公众号ID:All_best_xiaolong
评论
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 68浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 110浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 471浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 498浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 507浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 489浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 83浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 328浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 463浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 529浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 102浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 448浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 198浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦