干货|大牛总结的反激变换器设计笔记

电子工程世界 2023-03-01 07:30
▲ 更多精彩内容 请点击上方蓝字关注我们吧

Part1
概述
开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step介绍反激变换器的设计步骤,并以一个6.5W隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。

基本的反激变换器原理图如图1所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。
Part2
设计步骤
接下来,参考图2所示的设计步骤,一步一步设计反激变换器
Step1:初始化系统参数
------输入电压范围:Vinmin_AC 及Vinmax_AC
------电网频率:fline(国内为50Hz)
------输出功率:(等于各路输出功率之和)
------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率:
对多路输出,定义KL(n)为第n路输出功率与输出总功率的比值:
单路输出时,KL(n)=1.
Step2:确定输入电容Cbulk
Cbulk的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W即可,电容充电占空比Dch 一般取0.2即可。
一般在整流后的最小电压Vinmin_DC处设计反激变换器,可由Cbulk计算Vinmin_DC:
Step3:确定最大占空比Dmax
反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM模式存储的能量少,故DCM模式的变压器尺寸更小。但是,相比较CCM模式而言,DCM模式使得初级电流的RMS 增大,这将会增大MOS管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM模式常被推荐使用在低压大电流输出的场合,DCM模式常被推荐使用在高压 小电流输出的场合。
图4 反激变换器
对CCM模式反激变换器而言,输入到输出的电压增益仅仅由占空比决定。而DCM模式反激变换器,输入到输出的电压增益是由占空比和负载条件同时决定的,这使得DCM模式的电路设计变得更复杂。但是,如果我们在DCM模式与CCM模式的临界处(BCM模式)、输入电压最低(Vinmin_DC)、满载条件下,设计DCM模式反激变换器,就可以使问题变得简单化。于是,无论反激变换器工作于CCM模式,还是DCM模式,我们都可以按照CCM模式进行设计。
如图 4(b)所示,MOS管关断时,输入电压Vin与次级反射电压nVo共同叠加在MOS的DS两端。最大占空比Dmax确定后,反射电压Vor(即nVo)、次级整流二极管承受的最大电压VD以及MOS管承受的最大电压Vdsmax,可由下式得到:
通过公式(5)(6)(7),可知,Dmax 取值越小,Vor 越小,进而MOS管的应力越小,然而,次级整流管的电压应力却增大。因此,我们应当在保证MOS管的足够裕量的条件下,尽可能增大Dmax,来降低次级整流管的电压应力。Dmax的取值,应当保证Vdsmax不超过MOS管耐压等级的80%;同时,对于峰值电流模式控制的反激变换器,CCM模式条件下,当占空比超过0.5 时,会发生次谐波震荡。综合考虑,对于耐压值为700V(NCP1015)的MOS管,设计中,Dmax不超过0.45为宜。
Step4:确定变压器初级电感Lm
对于CCM模式反激,当输入电压变化时,变换器可能会从CCM模式过渡到DCM模式,对于两种模式,均在最恶劣条件下(最低输入电压、满载)设计变压器的初级电感Lm。由下式决定:
其中,fsw为反激变换器的工作频率,KRF为电流纹波系数,其定义如下图所示:
对于DCM模式变换器,设计时KRF=1。对于CCM模式变换器,KRF<1,此时,KRF 的取值会影响到初级电流的均方根值(RMS),KRF越小,RMS越小,MOS管的损耗就会越小,然而过小的KRF 会增大变压器的体积,设计时需要反复衡量。一般而言,设计CCM模式的反激变换器,宽压输入时(90~265VAC),KRF取0.25~0.5;窄压输入时(176~265VAC),KRF取0.4~0.8 即可。
一旦Lm确定,流过MOS管的电流峰值Idspeak和均方根值Idsrms亦随之确定:
其中:
设计中,需保证Idspeak不超过选用MOS管最大电流值80%,Idsrms用来计算MOS 管的导通损耗Pcond,Rdson为MOS管的导通电阻。
Step5:选择合适的磁芯以及变压器初级电感的匝数
开关电源设计中,铁氧体磁芯是应用最广泛的一种磁芯,可被加工成多种形状,以满足不同的应用需求,如多路输出、物理高度、优化成本等。
实际设计中,由于充满太多的变数,磁芯的选择并没有非常严格的限制,可选择的余地很大。其中一种选型方式是,我们可以参看磁芯供应商给出的选型手册进行选型。如果没有合适的参照,可参考下表:
选定磁芯后,通过其Datasheet查找Ae值,及磁化曲线,确定磁通摆幅△B,次级线圈匝数由下式确定:
其中,DCM模式时,△B取0.2~0.26T;CCM时,△B取0.12~0.18T。
Step6:确定各路输出的匝数
先确定主路反馈绕组匝数,其他绕组的匝数以主路绕组匝数作为参考即可。主反馈回路绕组匝数为:
则其余输出绕组的匝数为:
辅助线圈绕组的匝数Na为:
Step7:确定每个绕组的线径
根据每个绕组流过的电流RMS值确定绕组线径。
初级电感绕组电流RMS:
次级绕组电流RMS由下式决定:
ρ为电流密度,单位:A/mm2,通常,当绕组线圈的比较长时(>1m),线圈电流密度取5A/mm2;当绕组线圈长度较短时,线圈电流密度取6~10A/mm2。当流过线圈的电流比较大时,可以采用多组细线并绕的方式,以减小集肤效应的影响。
其中,Ac是所有绕组导线截面积的总和,KF为填充系数,一般取0.2~0.3。
检查磁芯的窗口面积(如图 7(a)所示),大于公式 21 计算出的结果即可。
Step8:为每路输出选择合适的整流管
每个绕组的输出整流管承受的最大反向电压值VD(n)和均方根值IDrms(n)如下:
选用的二极管反向耐压值和额定正向导通电流需满足:
Step9:为每路输出选择合适的滤波器
第n 路输出电容Cout(n)的纹波电流Icaprms(n)为:
选取的输出电容的纹波电流值Iripple需满足:
输出电压纹波由下式决定:
有时候,单个电容的高ESR,使得变换器很难达到我们想要的低纹波输出特性,此时可通过在输出端多并联几个电容,或加一级LC滤波器的方法来改善变换器的纹波噪声。注意:LC滤波器的转折频率要大于1/3开关频率,考虑到开关电源在实际应用中可能会带容性负载,L不宜过大,建议不超过4.7μH。
Step10:钳位吸收电路设计
如图 8 所示,反激变换器在MOS关断的瞬间,由变压器漏感LLK与MOS管的输出电容造成的谐振尖峰加在MOS管的漏极,如果不加以限制,MOS管的寿命将会大打折扣。因此需要采取措施,把这个尖峰吸收掉。
反激变换器设计中,常用图 9(a)所示的电路作为反激变换器的钳位吸收电路(RCD钳位吸收)。
RClamp由下式决定,其中Vclamp一般比反射电压Vor高出50~100V,LLK为变压器初级漏感,以实测为准:
图 9 RCD钳位吸收
CClamp由下式决定,其中Vripple一般取Vclamp的5%~10%是比较合理的:
输出功率比较小(20W以下)时,钳位二极管可采用慢恢复二极管,如1N4007;反之,则需要使用快恢复二极管。
Step11:补偿电路设计
开关电源系统是典型的闭环控制系统,设计时,补偿电路的调试占据了相当大的工作量。目前流行于市面上的反激控制器,绝大多数采用峰值电流控制控制模式。峰值电流模式反激的功率级小信号可以简化为一阶系统,所以它的补偿电路容易设计。通常,使用Dean Venable提出的Type II补偿电路就足够了。
在设计补偿电路之前,首先需要考察补偿对象(功率级)的小信号特性。
如图8所示,从IC内部比较器的反相端断开,则从控制到输出的传递函数(即控制对象的传递函数)为:
附录分别给出了CCM模式和DCM模式反激变换器的功率级传递函数模型。NCP1015工作在DCM模式,从控制到输出的传函为:
其中:
Vout1为主路输出直流电压,k为误差放大器输出信号到电流比较器输入的衰减系数(对NCP1015而言,k=0.25),m为初级电流上升斜率,ma为斜坡补偿的补偿斜率(由于NCP1015内部没有斜坡补偿,即ma=0),Idspeak为给定条件下初级峰值电流。于是我们就可以使用Mathcad(或Matlab)绘制功率级传函的Bode图:
在考察功率级传函Bode图的基础上,我们就可以进行环路补偿了。
前文提到,对于峰值电流模式的反激变换器,使用Dean Venable Type II补偿电路即可,典型的接线方式如下图所示:
通常,为降低输出纹波噪声,输出端会加一个小型的LC滤波器,如图 10 所示,L1、C1B构成的二阶低通滤波器会影响到环路的稳定性,L1、C1B的引入,使变换器的环路分析变得复杂,不但影响功率级传函特性,还会影响补偿网络的传函特性。然而,建模分析后可知:如果L1、C1B的转折频率大于带宽fcross的5倍以上,那么其对环路的影响可以忽略不计,实际设计中,建议L1不超过4.7μH。于是我们简化分析时,直接将L1直接短路即可,推导该补偿网络的传递函数G(s)为:
其中:
CTR为光耦的电流传输比,Rpullup为光耦次级侧上拉电阻(对应NCP1015,Rpullup=18kΩ),Cop为光耦的寄生电容,与Rpullup的大小有关。图13(来源于Sharp PC817的数据手册)是光耦的频率响应特性,可以看出,当RL(即Rpullup)为18kΩ时,将会带来一个约2kHz左右的极点,所以Rpullup的大小会直接影响到变换器的带宽。
k Factor(k因子法)是Dean Venable在20世纪80年代提出来的,提供了一种确定补偿网络参数的方法。
如图 14 所示,将Type II补偿网络的极点wp放到fcross的k倍处,将零点wz放到fcross的1/k处。图12的补偿网络有三个参数需要计算:RLed,Cz,Cpole,下面将用k Factor计算这些参数:
-------确定补偿后的环路带宽fcross:通过限制动态负载时(△Iout)的输出电压过冲量(或下冲量)△Vout,由下式决定环路带宽:
-------考察功率级的传函特性,确定补偿网络的中频带增益(Mid-band Gain):
-------确定Dean Venable因子k:选择补偿后的相位裕量PM(一般取55°~80°),由公式32得到fcross处功率级的相移(可由Mathcad 计算)PS,则补偿网络需要提升的相位Boost 为:
则k由下式决定:
-------补偿网络极点(wp)放置于fcross的k倍处,可由下式计算出Cpole:
-------补偿网络零点(wz)放置于fcross 的1/k 倍处,可由下式计算出Cz:
Part3
仿真验证
计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,避免因为解析法在近似处理中带来的较大误差,还可以与实物调试相互补充,最大限度的降低设计成本,缩短开发周期。
本例采用经典的电流型控制器UC3843(与NCP1015控制原理类似),搭建反激变换器。其中,变压器和环路补偿参数均采用上文的范例给出的计算参数。
仿真测试条件:低压输入(90VAC,双路满载)
1.原理图
图17 仿真原理图
2. 瞬态信号时域分析
从图18可以看出,最低Cbulk上的最低电压为97.3V,与理论值98V大致相符。
3. 交流信号频域分析
4. 动态负载波形测试
测试条件:低压输入,满载,主路输出电流0.1A---1A---0.1A,间隔2.5ms,测试输出电压波形。
Part4
PCB设计指导
1. PCB layout—大电流环路包围的面积应极可能小,走线要宽。
2. PCB layout—高频(di/dt、dv/dt)走线
a. 整流二级,钳位吸收二极管,MOS管与变压器引脚,这些高频处,引线应尽可能短,layout时避免走直角;
b. MOS管的驱动信号,检流电阻的检流信号,到控制IC的走线距离越短越好;
c. 检流电阻与MOS和GND的距离应尽可能短。
3. PCB layout—接地
初级接地规则:
a. 所有小信号GND与控制IC的GND相连后,连接到Power GND(即大信号GND);
b. 反馈信号应独立走到IC,反馈信号的GND与IC的GND相连。
次级接地规则:
a. 输出小信号地与相连后,与输出电容的的负极相连;
b. 输出采样电阻的地要与基准源(TL431)的地相连。
Part5
PCB layout——实例

Part6
总结
本文详细介绍了反激变换器的设计步骤,以及PCB设计时应当注意的事项,并采用软件仿真的方式验证了设计的合理性。同时,在附录部分,分别给出了峰值电流模式反激在CCM模式和DCM模式工作条件下的功率级传递函数。
附录:峰值电流模式功率级小信号
对CCM模式反激,其控制到输出的传函为:
峰值电流模式的电流内环,本质上是一种数据采集系统,功率级传函由两部分Hp(s)和Hh(s)串联组成,其中
Hh(s)为电流环电流采样形成的二阶采样环节(由Ray Ridley 提出):
其中:
上式中,PO为输出总功率,k为误差放大器输出信号到电流比较器输入的衰减系数,Vout1为反馈主路输出电压,Rs为初级侧检流电阻,D为变换器的占空比,n为初级线圈NP与主路反馈线圈Ns1 的匝比,m为初级电流上升斜率,ma为斜坡补偿的补偿斜率,Esr为输出电容的等效串联电阻,Cout是输出电容之和。
注意:CCM模式反激变换器,从控制到输出的传函,由公式40可知,有一个右半平面零点,它在提升幅值的同时,带来了90°的相位衰减,这个零点不是我们想要的,设计时应保证带宽频率不超过右半平面零点频率的1/3;由公式41可知,如果不加斜坡补偿(ma=0),当占空比超过50%时,电流环震荡,表现为驱动大小波,即次谐波震荡。因此,设计CCM模式反激变换器时,需加斜坡补偿。
对DCM模式反激,控制到输出的传函为:
其中:
Vout1为主路输出直流电压,k为误差放大器输出信号到电流比较器输入的衰减系数,m为初级电流上升斜率,ma为斜坡补偿的补偿斜率,Idspeak为给定条件下初级峰值电流。

免责声明:本文系网络转载,版权归原作者所有。如本文所用视频、图片、文字如涉及作品版权问题,请在文末留言告知,我们将在第一时间处理!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。


推荐阅读

干货 | 3D大图解析高端PCB板的设计工艺
干货 | 到底什么是I/O的驱动能力?
干货 | 三点式LC正弦波振荡器电路详解
干货 | 串口几种常见丢失数据的问题

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角“三个小点”,点击“设为星标”。
欢迎扫码关注

电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 据国际精益六西格玛研究所(ILSSI)成员大卫·哈钦斯(David Hutchins)的回忆,在“六西格玛”名称出现前,摩托罗拉组建了约100个质量改进团队,接受朱兰博士制作的16盘录像带培训,名为《朱兰论质量改进》(Juran on Quality Improvement),为了推广这种严谨的分析方法(朱兰博士视频中的核心内容),摩托罗拉前首席执行官鲍勃·加尔文创造了“六西格玛”这一标签,用以表彰这种“最顶尖"的方法。大卫·哈钦斯(David Hutchins)是朱兰博士的好友,也为他的工作做
    优思学院 2025-04-22 12:03 93浏览
  •   电磁兼容(EMC)故障诊断系统软件解析   北京华盛恒辉电磁兼容故障诊断系统软件是攻克电子设备电磁干扰难题的专业利器。在电子设备复杂度攀升、电磁兼容问题频发的背景下,该软件于研发、测试、生产全流程中占据关键地位。以下为其详细介绍:   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。   一、软件核心功能   干扰与敏感分析:深度剖析电磁干
    华盛恒辉l58ll334744 2025-04-22 14:53 109浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 96浏览
  •   电磁兼容故障诊断系统平台深度解析   北京华盛恒辉电磁兼容(EMC)故障诊断系统平台是解决电子设备在复杂电磁环境下性能异常的核心工具。随着电子设备集成度提升与电磁环境复杂化,EMC 问题直接影响设备可靠性与安全性。以下从平台架构、核心功能、技术实现、应用场景及发展趋势展开全面剖析。   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。  
    华盛恒辉l58ll334744 2025-04-22 14:29 121浏览
  • 4 月 19 日,“增长无界・智领未来” 第十六届牛商大会暨电子商务十大牛商成果报告会在深圳凤凰大厦盛大举行。河南业之峰科技股份有限公司总经理段利强——誉峰变频器强哥凭借在变频器领域的卓越成就,荣膺第十六届电子商务十大牛商,携誉峰变频器品牌惊艳亮相,以十几年如一日的深耕与创新,书写着行业传奇。图 1:誉峰变频器强哥在牛商大会领奖现场,荣耀时刻定格牛商大会现场,誉峰变频器强哥接受了多家媒体的专访。面对镜头,他从容分享了自己在变频器行业二十年的奋斗历程与心路感悟。谈及全域营销战略的成功,誉峰变频器强
    电子与消费 2025-04-22 13:22 118浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 90浏览
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 127浏览
  • 近期,金融界消息称,江西万年芯微电子有限公司申请一项名为“基于预真空腔体注塑的芯片塑封方法及芯片”的专利。此项创新工艺的申请,标志着万年芯在高端芯片封装领域取得重要突破,为半导体产业链提升注入了新动能。专利摘要显示,本发明公开了一种基于预真空腔体注塑的芯片塑封方法,方法包括将待塑封的大尺寸芯片平铺于下模盒腔体内的基板并将大尺寸芯片的背向表面直接放置于基板上以进行基板吸附;将上模盒盖合于下模盒形成塑封腔,根据基板将塑封腔分为上型腔以及下型腔;将下型腔内壁与大尺寸芯片间的空隙进行树脂填充;通过设置于
    万年芯 2025-04-22 13:28 82浏览
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 116浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 89浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦