再谈RISC-V有没有机会,搞定高性能市场

路科验证 2023-02-27 12:30
要是直接在ChatGPT上问RISC-V未来有没有可能入驻高性能计算领域,或者如何占领高性能计算市场,以ChatGPT“端水大师”的秉性,大概率也不会正面回答。

这个问题转换一下思路,遥想2007年前后,x86在高性能计算市场全面取代其他架构。当年x86是怎么成功的,或者说怎么达成此等目标的,理论上不就是现在RISC-V可以参考的吗?于是我们问了ChatGPT,x86是如何在HPC领域逐渐取代其他指令集的。答案如下:


感觉说的方向大差不差,除了第四点“availability”的“x86处理器有很多供应商”(或许它的意思是很多OEM供应商)是在瞎说以外,其他几点也是某指令集在某市场有所斩获的通用答案。

去年我们曾经写过一篇题为《RISC-V在高性能领域有发展机会吗》的报道——只不过这篇文章以报道滴水湖论坛为主,并未着眼于RISC-V全局。这篇文章,我们打算多花点儿笔墨来探讨这个话题。

在此之前,我们还是要把“高性能”这个“领域”做简单界定。我们所说的RISC-V“搞定高性能市场“,理论上不应局限于HPC、超算,也在PC、汽车、数据中心这些部分。“高性能”是与“低功耗”相对的——而低功耗是指移动、嵌入一类的市场。

但不同细分领域的市场发展都有差异。比如说一般企业数据中心服务器的处理器,并不是家用PC处理器多加点儿核心和存储资源那么简单。而且PC与数据中心的生态需求差异也很大。所以本文暂且将“高性能”局限在数据中心(明确排除汽车、PC)。

其实就连数据中心也有不同的类别。去年英伟达把“数据中心”切分成了6个大的门类,分别是超级计算中心(超算)、企业计算数据中心(企业内数据中心)、超级集群(hyperscaler,占地超过1万平方英尺,服务器超过5000台的数据中心)、云计算、AI工厂、边缘数据中心(更接近端侧的数据中心)。这些数据中心的性能需求、技术方向都有不同。我们无法每一项都做剖析,所以只能从大方向将“高性能”市场作为一个抽象系统来谈。


虽说RISC-V这两年发展神速,但芯片出货量的大头、大部分应用还是集中在了嵌入式领域,有很大一部分核心出货量是不直接面向用户的。比如滴水湖论坛每年都在提的RISC-V生态成果,比如西数硬盘内RISC-V核心,甚至苹果都准备将一些不面向用户的功能切到RISC-V指令集上。

而在高性能部分,RISC-V其实也算有一些成果。最典型的像是谷歌TPU、平头哥在RISC-V高性能领域的规划,还有现在很火的Ventana面向数据中心的RISC-V处理器;以及此前Intel与BSC(巴塞罗那超算中心)合作准备为超算打造RISC-V芯片——虽然这个计划有一定概率已经黄了(受到Pathfinder计划停止的影响)...

以其发展年份,及其对于各部分市场的渗透,RISC-V的发展速度应该是x86、Arm历史上都很难企及的。看起来是前景一片大好。那么RISC-V在高性能市场会有多大的机会?

“高性能”,首先自然是性能问题

ChatGPT列出的当年x86于HPC市场成功的一大原因是“性能”。这当然是某一个指令集的处理器产品能够进驻高性能市场的先决条件,否则怎么叫“高性能”呢?

在高性能核心架构方面,一直在积极推进的应该是作为IP供应商的SiFive。这家公司现在有两个高性能计算上相对重要的客户:谷歌和NASA。在具体的产品上,SiFive一直在更新高性能系列核心IP。最新的P670是个13级流水线、4发射的乱序架构,在面积效益上对标的是Arm Cortex-A78。


另外MIPS这家公司现在正在搞RISC-V(虽然听起来很奇特)。他们有个eVocore P8700核心,从8-wide取指、7-wide执行来看,这是个超宽大核心;每个cluster最多8核方案,可扩展至64 cluster、512核心;应用方向是汽车、数据中心、HPC等。无论如何也都是高性能了。

还有像是平头哥玄铁C910之类的很多同学应该都比较熟悉了;以及我们一直在提,后文也会提到的Ventana。

不过当高性能涉及到到大规模集群、超算之类的程度,那么仅有高性能核心是远远不够的。PC这类设备的高算力需求可能在3D游戏、视频渲染之类的场景上,这些工作要求性能突发、单核高频率。但对数据中心和超算而言,大量程序同时运行的并行吞吐才是最重要的——所以我们看到面向服务器的处理器虽然核心数量超多,但核心频率却并不怎么高。

一般超级集群数据中心或者云要响应大量的用户请求,所以需要并行和吞吐。而具体到超算上,超算解决气候预测、蛋白质折叠、量子计算、模拟仿真之类的问题,这些问题的任何一个都要拆解成需要大规模并行的细分问题。这样的规模一旦大到一定程度,则不是一颗或者几颗处理器、加速器芯片可以解决的。

所谓的“集群”部署,是指大量处理器不仅需要跨芯片做通信,还需要跨板、跨服务器节点做通信。这类系统的瓶颈可能在die与die、芯片与芯片、板与板、节点与节点之间的通信延迟和带宽方面——换句话说就是大量处理器同时工作时,协同的能力和效率。当然完成不同的任务,对核心与系统的需求也可能存在很大差异,但大方向就是如此。

某种程度上,x86在数据中心的某些细分领域,比如HPC AI领域显现出颓势,与其系统内部互联方式(如CPU与加速器的互联)、节点互联与通信的效率有关系——尤其是AI追求的数据处理过程中的数据传输大吞吐。所以在英伟达宣布Arm架构的Grace CPU之际,NVLink 4作为CPU与GPU的的通信带宽相较于PCIe是惊艳了很多人的;还有后来的Grace-Hopper,die-to-die高速互连。


这涉及到的是周边生态与系统成熟性问题。可能绝大部分同学对于“生态”的理解是局限在下游的应用生态的。但当把眼光放到上游、周边和下游,生态的问题可能就没那么简单了。不仅是互联,还有存储支持等处理器之外一整套系统的性能和效率问题。当这些共同被提起时,RISC-V的高性能之路可能还有些漫长。

Arteris IP的解决方案与业务开发副总裁Frank Schirrmeister此前在接受外媒采访时曾说:“对于HPC而言,处理器核心的时钟频率、核心数量、核心可扩展性以及对应的互联方式都是关注点所在。但内存带宽、能效、增加自有矢量指令集之类的问题也同样重要。”

Rob Aitken(Synopsys fellow)也说过,数据是要从内存载入到处理器中的,而且还需要在加速器内做数据处理,并写回到内存里,“整条路径上,各环节都可能成为瓶颈。uncore部分很关键,存储系统也很关键。在完成特定的任务时,需要搞清楚系统架构的瓶颈在哪儿。这些都在CPU以外。”


BSC(巴塞罗那超算中心)此前就和其他高校在联合开发基于RISC-V架构的高性能计算系统Monte Cimone。介绍中提到Monte Cimone总共8个计算节点,每个节点内都采用SiFive的U740芯片(基于SiFive HiFive Unmatched板),每个芯片里4个U74核心,频率最高1.2GHz。一个节点系统内16GB DDR4内存,1TB NVMe存储。这部分研究也挺有趣,有兴趣的同学可前往阅读。

领衔这套系统研究的意大利超算中心CINECA表示,虽然RISC-V现在的发展速度很快,软件栈也快速走向成熟,但是“显然SoC的核心性能与数量,最终所能够达到的性能,仍然无法与成熟的Arm和x86核心相较”。这说的就是系统层面真正展现出来的性能水平。

生态、效率和成本,能否步入良性循环?

Intel还没有叫停RISC-V Pathfinder项目之时,Intel的超级计算业务总经理兼副总裁Jeff McVeigh曾说HPC要应用RISC-V还有好多年的距离(many years away)。“除了设计芯片以外,还有很多的工作要做。”McVeigh说,“代码移植、性能、各种各样的事情,还有很长的路要走。”

值得一提的是,虽然Intel已宣布停止Pathfinder项目,但上个月Intel发言人提到,这一决定不会影响IFS相关业务开展和Horse Creek平台。其实此前Intel和SiFive一起推的Horse Creek还是挺受关注的——这是个高性能demo,本身是个RISC-V软件开发板。上面的RISC-V芯片据说用上了尚未大规模量产的Intel 4工艺,主体是SiFive P550核心;另外也是为了表现Intel自己的PCIe 5.0与DDR5 PHY和Synopsys控制器、其他第三方IP的互操作性。

Intel去年在演示这块板子的时候,还在上面跑了游戏和各种应用。而Horse Creek平台的问世,前提是Intel的IFS Accelerator生态联盟——这个项目主要是为了加速芯片原型设计和流片的;与芯片设计上游的EDA、IP和设计服务企业进行深度合作来做推进。

IFS Accelerator就是个综合工具套装,其中包含有经过了验证、针对Intel制造工艺的优化IP组合,比如说标准单元库、存储、GP I/O、模拟、I/F IP等。SiFive也是IFS Accelerator的成员之一,此前SiFive说:“SiFive会赋予客户构建RISC-V计算平台的能力,为其优化市场应用。Intel广泛的IP组合,对SiFive的高性能处理器IP做了补充。”


从“生态”上游的角度来看,芯片设计的相关工具、各种IP、软件,以及foundry厂的配合支持,更是RISC-V这类新生架构需要面对的问题。而Horse Creek是一个代表性产品。Frank Schirrmeister说:芯片的最终表现绝不只是ISA甚至RTL层级的问题,“如果你去看各种IP,其成功一定是和物理工具、物理实现相关的。单说互联,也只是系统的一部分,需要IP与实施流程协同优化来达到对应的性能和功耗。”

BSC也说对他们而言至关重要的一点,是在整个链条上,了解如何把芯片做好-他们有来自整个欧洲的支持;甚至将问题扩展到培养欧洲的人才和该区域内的半导体生态系统。这么看来,RISC-V及其生态发展的加速,还真是有全球半导体产业区域化和自主化的推力在的,绝对不只是中国。

至于生态下游,也就是大部分人所理解的基于RISC-V平台的应用开发生态,这已经是个老生常谈的话题了,其沉淀还是需要时间的。所以从不同层面的生态角度:芯片设计上游的工具完备情况、围绕芯片周边的系统设计生态,以及下游的应用开发生态,都是某个指令集或微架构平台能否在对应领域获得市场的重要组成。

包括ChatGPT在内的很多人说,某某指令集成功的原因在于其处理器成本低、效率高、性能强。这些自然都是处理器获得市场成功的外在表现。但这些本质上都离不开生态的发展。


一般我们知道,通用计算芯片的发展有个良性循环三角:有用户会选择购买某种处理器,资金便开始进入到该处理器周边的生态,这些资金会让产品在技术方面做得更好;在产品得到提升以后,又会有更多的客户选择购买,并吸引下一轮资金...如此循环往复。

而生态、成本、性能/效率也是个循环:芯片出货起量产生成本效益,芯片赚钱才能促成了技术的进步——即芯片效率越好,效率越好则能促进整个生态的发展,生态发展越是促成芯片出货起量...如此循环往复。

生态、性能/效率、成本达成了相互促进的关系。如果走不进这样的良性循环,则很难把游戏真正玩起来。x86和Arm相继在高性能领域站稳脚跟,都是因为进入了这样的良性循环。

前文花了不少篇幅来谈生态——文首ChatGPT回答中提到的compatibility、support本质上都是在说生态。而“性能”前文也已经谈到了:基于第一部分的探讨,性能和生态也是相辅相成的。

至于成本问题,体现在数据中心的TCO(总拥有成本)上,包含芯片与设备投入,对企业本身业务赚钱的直接影响,还有系统基础设施建设与维护、系统易用性、应用开发、场地租用、电费等能源开销等等的成本。在良性循环三角内,生态做得好,成本自然在降低。

现阶段探讨RISC-V的性能与效率,相较于Arm、x86的实际情况可能还为时过早,毕竟生态建设进度还早。业界普遍认为,RISC-V若要进驻高性能市场,仍有比较长的路要走。像SiPearl公司CEO Philippe Notton就认为RISC-V至少现在都不是高性能计算的可选项。

但我们前面列举的这些关键事件和既有产品,无论其中有多少变数(如Intel Pathfinder项目停止对于RISC-V生态而言的确很可惜)、企业是否诚实反映了产品实际情况(如P670的性能是否的确比肩Cortex-A78),都能表现RISC-V的生态建设之神速,的确是x86、Arm在生态建设初期难以比拟的。

而且我们认为,此事已有Arm珠玉在前,RISC-V自然就有机会。

RISC-V的一大优势:灵活性

说到性能和效率,有关Ventana的RISC-V核心就格外值得一提了。Ventana公司的Veyron VT1从宣传来看,每核性能据说是比肩于Arm Neoverse V系列的——也就是Neoverse中更高性能定位的系列——亚马逊Graviton 3和英伟达Grace分别基于Neoverse V1和V2。


Ventana在宣传中提到,CPU可选配最高128个核心,功耗<300W。如果宣传数据属实,则其性能水平可以比肩AMD Genoa。SemiAnalysis在最近的评论文章里说,就算按照宣传数据打八折来计,则其性能仍然超过了Intel至强Ice Lake和才刚刚见到影儿的Sapphaire Rapids。

据说Ventana接下来要推的VT2核心效率还能做到更高,尤其面积效益表现很出色——单位面积内的性能传言很好,则成本方面的收益也就更高了。与此同时,现有方案中与VT1搭配的IO die,已经用BoW实现chip-to-chip互联,1Tbps双向带宽,PHY-to-PHY连接延迟<2ns,传输能好效率达成<0.5pj/bit。(有兴趣的同学可以去了解一下Sapphaire Rapids采用EMIB封装方案后的这几个数据;此外,Ventana也是Intel IFS Accelerator项目的合作方之一)

这些宣传数据是的确比也当代采用先进封装的Intel、AMD服务器处理器要好的。关键其封装的触点密度似乎还并不高,不知道是用了什么奇技淫巧。也不清楚这些数据是否有较大水分。而且如前文探讨的,当算力要求再往上提的时候,考量数据中心的性能水平更在于整个系统,而不只是核心、芯片与封装层级这么简单——这还是要考察生态能力的。

Ventana还说自己在应用方面也准备充分,提前几年就已经在用SiFive的开发板做软件开发了…抛开这些不谈,Ventana的业务优势核心可能并不在于性能和效率,或者预想中可能前期也好不到哪儿去的应用生态,而在于定制性、灵活性或个性化。这个灵活性不是简单的自定义指令扩展、外接加速器之类的灵活。


Ventana面向客户主要提供的是chiplet,而且本身似乎是不提供IO die的,IO die来自第三方或合作伙伴。这种不是出售整个芯片的方案,提供了大量可能性。比如光是IO die就可以采用现成方案,或者采用授权IP来自行开发。

下游客户完全可以集中精力去开发专用的加速器chiplet—加速单元可以直接集成进IO die。这种方案非常适合系统级企业,诸如亚马逊、阿里巴巴、腾讯、百度等,这些企业如今都倾向于自己造芯——上游的EDA、IP供应商前两年已经宣扬了一整年的这种趋势了。对于实现符合自身业务的芯片设计而言,包括汽车在内有高性能计算需求的系统级企业不再需要在CPU方向上重复造轮子,也对应地降低了很大一部分成本。

Ventana现阶段主要是用Open Compute Project的ODSA BOW标准来做封装,与此同时也计划在未来版本中实现对UCIe这个更具潜力标准的支持(据说今年下半年);chiplet/IO die现在都使用AMBA CHI协议。整体上还是体现出相对开放的灵活性。

这是AMD、Intel这类现在的市场霸主所不具备的,不光是因为业务营运方式差异,像Intel现在的处理器架构暂时也不支持这种卖货方式的实现。另外就是成本会低很多:尤其在芯片做出来以后,大量芯片部署到集群里,后续成本是递减的;这对系统级企业而言具备很大吸引力。

或许RISC-V所能达成的灵活性还不止于此,各层级的灵活性和定制性未来还有更大的潜力做挖掘。比如Schirrmeister说,集群需要很多处理器互联,“你需要考虑核心的可扩展性,也就是核心与互联的协同优化。RISC-V在这一层级给出了自由度,可能会比一些现有标准做得更好。当然这需要去做很多工作,也绝对不简单。”但这也让RISC-V在这一层级的生态发展有了不同的可能性。

这种灵活性,和随摩尔定律停滞、某些类别的数据中心芯片的定制化需求,是x86和Arm现阶段还很难达成的。而且RISC-V的这种灵活性还提供了更高的经济效益,针对应用和业务也有机会提供更高的性能。

像Ventana这样做定制方案的例子,在RISC-V生态内未来可能也会更加多样化。BSC与Intel的合作,此前也是着眼于把RISC-V核心做成chiplet。如此看来,chiplet、先进封装技术和异构集成,本身就是推进RISC-V这类具备高定制化可能性的CPU指令集发展的先决条件。

同时,进入到专用计算的时代,CPU未来在高性能计算领域可能仅作为控制器、愈发被边缘化,或者至少市场价值更多地被加速器拿走——很多研究机构未来几年的预测都给出数据中心服务器价值中,CPU的绝对主导地位会被加速器所逐渐取代。

那么针对特定工作进行定制,RISC-V自然更能在性能和效率上打败那些固定的、通用的CPU架构,即便这个过程所需的时间大概会很久,尤其软件和应用的移植工作不会很容易。


我们的探讨大致就只能止步于此了。能够给出的参考主要是RISC-V的生态建设速度飞快,无论是芯片设计相关的生态、围绕芯片的系统方案、应用生态;以及RISC-V当前符合时代发展主旋律,具备的灵活性特性可能有机会抢占特定的数据中心市场。

从行业支持的角度来说,由于电子产业发展的不确定性和产业链的区域化大趋势,RISC-V在全球范围内都得到了前所未见的支持力度。仅是HPC领域,RISC-V联盟都有个专门的SIG-HPC(高性能计算特别兴趣小组),也算是为RISC-V在HPC社区的发展做的努力之一。

虽然即便在搞RISC-V方向HPC研究的专家都说,RISC-V要应用于HPC这样的方向还需要好些年。数据中心其他门类的情况可能会各有差别;但其实从前文罗列部分市场参与者在高性能方向的努力来看,RISC-V在该市场上有着巨大潜力:而且越看越有占据天时地利人和全方位优势的样子——也不光是前面提到的大环境因素,RISC-V的两名竞争对手现在甚至都还出现了后院失火的情况。

作者:黄烨锋 资深产业分析师



END

路科验证 专注于数字芯片验证的系统思想和前沿工程领域。路桑是Intel资深验证专家,主持验证架构规划和方法学研究,担任过亿门级通信芯片的验证经理角色。在工程领域之外,他在西安电子科技大学和西安交通大学客座讲授芯片验证课程。著有书籍《芯片验证漫游指南》。
评论
  • 引言  LIN(Local Interconnect Network)是一种针对汽车电子系统应用的串行通信协议,主要用于汽车电子控制单元(ECU)之间的通信。LIN总线的特点是成本低、速率低、通信距离短、连接节点少,主要用于对带块要求低、实时性要求不高的控制任务,例如车门控制、天窗控制、座椅控制、车内照明等功能。LIN总线采用的是主从式架构,由主节点基于调度表调度网络中的通信。  LIN总线的错误类型  尽管LIN协议设计简单,具有低带
    北汇信息 2024-12-25 14:18 65浏览
  • 概述 Intel 要求用户为其10代FPGA器件使用特定的上电和掉电顺序,这就要求用户在进行FPGA硬件设计的时候必须选择恰当的FPGA供电方案,并合理控制完整的供电上电顺序。经过在Cyclone 10 GX测试板上实际验证,统一上电确实会导致FPGA无法正常工作,具体表现为JTAG接口无法探测或识别到目标器件。上电顺序要求 Cyclone 10 GX,Arria 10以及Stratix 10系列器件所有的电源轨被划分成了三个组合,三组电源轨要求依次上电,如图1所示,为三组电源轨上电顺序示意图。
    coyoo 2024-12-25 14:13 57浏览
  • 在谐振器(无源晶振)S&A250B测试软件中,DLD1到DLD7主要用于分析晶体在不同驱动功率下的阻抗变化。此外,还有其他DLD参数用于反映晶振的磁滞现象,以及其频率和功率特性。这些参数可以帮助工程师全面了解KOAN晶振在不同功率条件下的动态特性,从而优化其应用和性能。磁滞现象晶振的磁滞现象(Hysteresis)是指在驱动功率变化时,晶体的阻抗或频率无法立即恢复至初始状态,而表现出滞后效应。1. DLDH: Hysteresis Ratio (MaxR/MinR)在不同驱动
    koan-xtal 2024-12-26 12:41 81浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-26 09:19 104浏览
  • RK3506是瑞芯微Rockchip在2024年第四季度全新推出的Arm嵌入式芯片平台,三核Cortex-A7+单核Cortex-M0多核异构设计,CPU频率达1.5Ghz, M0 MCU为200Mhz。RK3506平台各型号芯片该怎么选,看这篇文章就够了。RK3506各型号RK3506有3个型号,分别是RK3506G2、RK3506B、RK3506J,配置参数如图: 配置差异解析总的来说,RK3506各型号间的差异主要体现在内存、工作温度和封装上‌:内存差异‌:RK3506G2‌集成
    Industio_触觉智能 2024-12-25 10:27 40浏览
  • 全球照明技术创新领航者艾迈斯欧司朗,于2024年广州国际照明展览会同期,举办【智慧之光】· 艾迈斯欧司朗-照明应用研讨会,以持续的技术创新,推动光+概念的全面落地。现场还演示了多款领先照明技术,且由资深工程师倾情解读,另有行业大咖深度洞察分享,助你开启“光的无限可能”探索之旅!精彩大咖分享引领未来照明无限遐想艾迈斯欧司朗精心准备了照明领域专业大咖的深度分享,无论是照明领域的资深从业者,还是对照明科技充满好奇的探索者,在这里,您都将大有所获。在艾迈斯欧司朗照明全球产品市场VP Geral
    艾迈斯欧司朗 2024-12-25 20:05 58浏览
  • 本文介绍瑞芯微开发板/主板Android系统APK签名文件使用方法,触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,各类接口一应俱全,帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。系统签名文件生成APK系统签名文件,具体可参考此文章方法RK3588主板/开发板Android12系统APK签名文件生成方法,干货满满使用方法第一步,修改APK工程文件app/src/build.gradle,并添加以下内容: android {     na
    Industio_触觉智能 2024-12-26 09:20 76浏览
  • “金字招牌”的户外叙事。2024年的夏天似乎异常炙热,体育迷们的心跳也随之澎湃,全球瞩目的体育盛宴——巴黎奥运会在此刻上映。在这个充满荣耀与梦想的夏天,我们见证了无数激动人心的瞬间:男子4X100米混合泳接力决赛中,潘展乐的最后一棒,气壮山河,中国队的历史性夺冠,让整个泳池沸腾;射击10米气步枪混合团体决赛,黄雨婷和盛李豪的精准射击,为中国队射落首金,展现了年轻一代的力量;乒乓球男单四分之一比赛中,樊振东的惊天逆转令人难以忘怀,凭借坚韧不拔的意志和卓越的技术,成功挺进半决赛,并最终夺冠……在这一
    艾迈斯欧司朗 2024-12-25 19:30 71浏览
  • 据IDTechEx最新预计,到2034年,全球汽车舱内传感(In-Cabin Sensing,ICS)市场将超过85亿美元。若按照增长幅度来看,包含驾驶员监控系统(DMS)、乘员监控系统(OMS)、手势控制和生命体征监测等高级功能在内的舱内传感市场预计2020年到2034年将增长11倍。感光百科:ICS中的光源选择01、政策推动带来的“硬”增长作为其中的增长主力,舱内监控系统应用(包含DMS和OMS等)被推动增长的首要因素正是法规。据统计,中国、欧盟、美国、韩国、印度等主要汽车国家或地区已推出相
    艾迈斯欧司朗 2024-12-25 19:56 71浏览
  •       半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。     半导体材料按化学成
    锦正茂科技 2024-12-24 13:11 31浏览
  • 当下,智能手机市场正呈现出明显的高端化趋势,更多消费者愿意为高端设备买单,这也推动了智能手机均价的提升。作为中国科技品牌出海的代表,传音控股凭借在折叠屏手机、AI技术、多肤色影像技术等方面的优势,在全球高端手机市场上展现出强大的竞争力。智能手机高端化趋势明显,传音打造AI技术优势12月初,全球市场调研机构Counterpoint发布报告称,2024年三季度,全球智能手机市场出货量达3.07亿部,同比增长2%,连续四个季度保持增长。全球智能手机收入同比增长10%,平均售价增长7%,均创下历史新高。
    电子资讯报 2024-12-24 16:57 39浏览
  • 新能源汽车市场潮起潮落,只有潮水退去,才能看清谁在裸泳。十年前,一批新能源汽车新势力带着创新的理念和先进的技术,如雨后春笋般涌入中国汽车市场,掀起一场新旧势力的角逐。经历市场的激烈洗礼与投资泡沫的挤压,蔚来、理想、小鹏等新势力车企脱颖而出,刷爆网络。不曾想,今年新势力车企杀出一匹“超级黑马”,爬上新势力车企销量榜前三,将蔚来、小鹏等昔日强者甩在了身后,它就是零跑汽车。公开数据显示,11月份,零跑汽车实现新车交付量约4.02万辆,同比增长117%,单月销量首次突破4万辆;小鹏汽车当月共交付新车约3
    刘旷 2024-12-26 10:53 112浏览
  • 今年AI技术的话题不断,随着相关应用服务的陆续推出,AI的趋势已经是一个明确的趋势及方向,这也连带使得AI服务器的出货量开始加速成长。AI服务器因为有着极高的运算效能,伴随而来的即是大量的热能产生,因此散热效能便成为一个格外重要的议题。其实不只AI服务器有着散热的问题,随着Intel及AMD 的CPU规格也不断地在提升,非AI应用的服务器的散热问题也是不容小觑的潜在问题。即便如此,由于目前的液冷技术仍有许多待克服的地方,例如像是建置成本昂贵,机壳、轨道、水路、数据中心等项目都得重新设计来过,维修
    百佳泰测试实验室 2024-12-26 16:33 71浏览
  • 在PCB设计中,Stub(也称为短桩线或残桩线)对信号传输有以下几个主要影响:1.容性效应导致的阻抗偏低:Stub会导致容性效应,使得阻抗偏低,影响信道的阻抗一致性。Stub越长,阻抗降低得越多。这是因为传输线瞬态阻抗计算公式为:Z = \ sqrt { \ frac { L } { C } }Stub就像并联在传输线上的小电容,Stub越长,电容量越大,阻抗也就越低。2.信号反射:当信号在传输线与Stub的交界处遇到阻抗不匹配时,会产生信号反射。这会导致信号的失真和能量的反向传播,增加了噪声和
    为昕科技 2024-12-24 18:10 31浏览
  • IP 语音(VoIP)网络依赖于 SIP(会话启动协议)和 RTP(实时传输协议)等实时通信协议,因此必须保持高可用性和低延迟。一旦出现问题,就必须迅速查明并解决,以防止服务中断。一个常见的问题是不兼容问题,目前有 100 多份与 SIP 相关的征求意见稿(RFC),其中有大量 “应该”(SHOULD)而非 “必须”(MUST)的声明。这通常会导致用户无法拨出或拨入电话。本文将介绍一种使用 IOTA 的故障排除方法,IOTA 是一种实时流量捕获和分析工具,可简化复杂 VoIP 网络问题的根本原因
    艾体宝IT 2024-12-24 14:37 48浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦