运算放大器参考指南

原创 云深之无迹 2023-02-25 23:32


电源电压(VCC) – 运算放大器正常工作时,两个电源引脚之间的电压差。在意法半导体的产品系列中可找到5V、16V和36V的产品。
静态电流/供电电流(ICC) – 封装中的每个运算放大器运行所需的电源电流。
输入偏移电压(VIO) – 使输出处于电源电压的中间范围的+和-引脚之间的差分输入电压。它源自内部晶体管的匹配。
输入偏置电流(IIB) – 流经运算放大器输入的电流。由于运算放大器的偏置要求和正常工作泄漏,极少量的电流(pA或nA范围,取决于技术)会流经其输入。当大电阻或具有较高输出阻抗的源连接到运算放大器输入端时,这可能会引起问题。这会导致运算放大器的输入端出现相关压降,从而导致误差。
增益带宽积(GBP或GBW) – 运算放大器增益与带宽的乘积。它在20 dB的增益下测得。为小信号而定义。
电压转换率(SR) – 运算放大器改变其输出电压的速度。运算放大器的输出变化率受电压转换率值限制。如果要放大的信号过快,则会导致失真。
轨到轨输入 – 具有高轨输入的运算放大器能够处理高达Vcc+的输入信号,而低轨输入则能够处理低至Vcc-的信号。轨到轨输入运算放大器可处理从Vcc-到Vcc+的输入信号。
轨到轨输出 – 运算放大器将其输出驱动到非常靠近电源干线的能力。
噪声水平 – 即使未在其输入端施加任何信号,运算放大器也会在输出端产生随机电压。这种噪声来自热噪声(白噪声)或1/f噪声,该噪声也被称为闪烁噪声。对于具有高增益或高带宽的应用,噪声水平可能会变得很高。
容性负载 – 可能导致运算放大器变成振荡器。运算放大器的输出电阻与容性负载有关,该负载会在电路传递函数中产生额外的极点。通过伯德图可清楚地查看电路在哪种运行条件下会变得不稳定。
零漂移 – 斩波运算放大器旨在对其VIO误差进行“自我校正”,以及随着温度与时间的变化而产生的误差。得益于其设计,零漂移运算放大器的VIO在微伏范围内,每摄氏度的漂移也在类似的“毫微伏”范围内。零漂移运算放大器几乎无1/f噪声,而且,随着时间的推移,其“老化”可以忽略不计。
关闭 – 运算放大器关闭。通常用于在应用不运行或不需要放大时降低电路待机电流。通常由专用运算放大器引脚控制。
EMI强化 – 运算放大器的输入引脚非常敏感,可在您的设计中充当电磁干扰的门。一些运算放大器嵌入了EMI滤波器,以使高频信号衰减60 dB或更高。
应变计 – 用于测量物体变形的传感器。
RTD传感器 – 电阻温度检测器。许多RTD传感器由缠绕在陶瓷/玻璃承载芯上的细金属丝制成。
热电偶 – 不同类别的金属之间的每次过渡都会产生微小的热电电压。这一效应被用于某些温度传感器。

增益(Gain)

增益是指放大器输出信号与输入信号的比值,通常以dB表示。在放大器设计中,增益是非常重要的参数,因为它决定了放大器输出信号相对于输入信号的增强程度。例如,如果一个放大器具有20 dB的增益,则输出信号将是输入信号的10倍。增益越大,放大器输出信号相对于输入信号的增强程度就越高。

带宽(Bandwidth)

带宽是指放大器可以放大的频率范围。放大器的带宽通常由低频截止频率和高频截止频率决定,也就是放大器可以放大的最低和最高频率。放大器的带宽决定了其在实际应用中能否适用于特定的频率范围。例如,如果你需要一个放大器来放大一个音频信号,那么你需要一个具有足够带宽的放大器来处理从20 Hz到20 kHz的频率范围。

输入阻抗(Input impedance)

输入阻抗是指放大器输入端的阻抗,也就是输入信号需要克服的电阻。输入阻抗越大,输入信号就越容易被放大器接受。在实际应用中,输入阻抗的选择会影响信号源和放大器之间的匹配,从而影响信号质量和放大器的工作效率。

输出阻抗(Output impedance)

输出阻抗是指放大器输出端的阻抗,也就是输出信号需要克服的电阻。输出阻抗越小,输出信号就越容易被接受。在实际应用中,输出阻抗的选择也会影响放大器和负载之间的匹配,从而影响信号质量和放大器的工作效率。

偏置电压(Bias voltage)

偏置电压是指放大器输入端的电压,用来调整放大器的工作状态,使得输出信号符合预期。偏置电压可以用来控制放大器的直流工作点,使得输出信号能够保持稳定,并且在不同的负载下保持一致性。

典型运算放大器应用和关键参数

低压信号放大

放大低压信号时,肯定需要高精度运算放大器,因为输入偏移电压会直接影响您的测量。另一方面,大多数低压信号来自低阻抗源,因此,输入偏置电流并不重要。差分放大器或仪表放大器采用典型电路。电流检测是一种典型应用,该应用通常需要低轨或高轨功能,并可能需要具有一定转换率,以跟踪PWM。其他应用包括惠斯登电桥电路,如应变计、RTD传感器或电阻传感器。在此类应用中,大多数情况下不需要轨到轨输入,但您可能需要低噪声设备。这同样适用于热电偶。

小电流放大:

提供小电流的传感器将需要具有低输入偏置电流的运算放大器。所有这些应用均使用输入偏移电压通常并不重要的跨阻抗放大器。典型应用包括用于通信、光幕、烟雾探测器、电化学气体传感器或光学心率监测器的光电二极管电流检测电路。在这种情况下,该器件通常由电池供电,因此功耗可能很重要,或者该器件需要快速运行,并可能需要高电压转换率。

ADC缓冲:

将模拟信号接入ADC可能会很棘手,因为ADC需要在短时间内获得高电流,以便为输入电容充电。运算放大器输出端通常驶入一个额外的电容,这可能会引起稳定性问题,并可能需要使用补偿技术。无论如何,运算放大器引起的误差应小于ADC的一个LSB。此外,运算放大器可用作基本的混叠滤波器。

理想运算放大器和实际运算放大器的主要特性

差分放大器(差动放大器)

放大其输入之间的电压差

反相放大器

反相放大器是差分放大器产生的输出相对于其输入异相180°的特例
同相放大器

在这种情况下,输出电压始终与输入电压同相,这就是为什么这种拓扑被称为同相拓扑。
电压跟随器(单位缓冲放大器)

该电路通常不需要外部元件,并提供高输入阻抗和低输出阻抗,这使其成为有用的缓冲器。

https://www.st.com/en/amplifiers-and-comparators/operational-amplifiers-op-amps.html


评论 (0)
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 155浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 236浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 121浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 184浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 143浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 229浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 106浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 152浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 64浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 90浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 70浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 80浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦