高速ADC的正确布板、元件选择及布局指南

射频百花潭 2023-02-24 00:01

本文详细介绍了通常应用于IF和基带的高速模数转换器(ADC)的正确布板、元件选择及元件布局。文中以高分辨率、高速数据转换器MAX12555系列为例,介绍了优化电路设计、正确高速布板、旁路和去耦技巧、热管理、元件选择及布局。


本文可作为高速数据转换器电路设计和布板建议的简明资源,是对高速数据转换器及其评估板数据资料中电路设计和PCB布板信息的补充。用户应根据其特定应用,仔细阅读所有可用资源,以使器件在特定应用中实现最优性能。文中以14位模数转换器(ADC) MAX12555为例,这些型号分别针对65Msps/80Msps/95Msps的采样速率进行了优化,适合所有IF和基带应用。

本文分为三部分:一般性建议、电路设计建议、布板建议。

  • 一般性建议概要介绍了如何在应用中发挥器件的最佳总体性能,讨论了一般情况下器件外围元件的最佳布局,提出了有关物理PCB本身的建议。

  • 电路设计建议介绍了最关键和最敏感引脚处元件的推荐值。

  • 布板建议中详细介绍了外围元件布局,指出哪些元件应放在顶层,哪些应放在底层,同时还提供了有关PCB的附加信息。


请参考:该系列ADC引脚排列见图1,引脚功能说明见表1。评估(EV)板提供多种选择,允许单端或差分时钟输入、单端或差分模拟信号输入、内部/外部基准等,所以评估板(见图2和图3)使用的外围元件和配置比正常应用中多。图4和图5为评估板顶层和底层的丝印及元件布局。


图1. MAX12555的引脚排列


表1. 引脚说明

引脚名称功能
1REFP正基准I/O。满幅模拟输入范围为±(VREFP - VREFN) x 2/3,REFP通过一个0.1µF电容旁路至GND。REFP与REFN之间并联一个1µF的电容和一个10µF电容。REFP和REFN间的1µF电容应与器件位于同一侧,并尽可能靠近器件。
2REFN负基准I/O。满幅模拟输入范围为±(VREFP - VREFN) x 2/3,REFN通过一个0.1µF电容旁路至GND。REFP与REFN之间并联一个1µF的电容和一个10µF电容。REFP和REFN间的1µF电容应与器件位于同一侧,并尽可能靠近器件。
3COM共模电压I/O。COM通过一个2.2µF电容旁路至GND。将2.2µF COM至GND的旁路电容尽可能靠近器件,可以放置在PCB另外一侧,通过1个过孔与ADC连接。
4, 7, 16, 35GND地。所有地引脚与EP相连。
5INP同相模拟输入。
6INN反相模拟输入。
8DCE占空比均衡器输入。DCE接低电平(GND)禁止内部占空比均衡器。DCE接高电平(OVDD或VDD)使能内部占空比均衡器。
9CLKN反相时钟输入。在差分时钟模式(CLKTYP = OVDD或VDD),差分时钟信号接在CLKP与CLKN之间。在单端时钟模式(CLKYP = GND),单端时钟信号接CLKP,CLKN接GND。
10CLKP同相时钟输入。在差分时钟模式(CLKTYP = OVDD或VDD),差分时钟信号接在CLKP与CLKN之间。在单端时钟模式(CLKYP = GND),单端时钟信号接CLKP,CLKN接GND。
11CLKTYP时钟模式定义输入,CLKTYP接GND时为单端时钟输入。CLKTYP接OVDD或VDD时为差分时钟输入。
12-15, 36VDD模拟电源输入。VDD连至3.15V至3.60V电源。VDD通过一个≥2.2µF的电容并联一个0.1µF电容旁路至GND。所有VDD引脚连至相同电位。
17, 34OVDD输出驱动器电源输入。OVDD可连至1.7V至VDD的电源。OVDD通过一个≥2.2µF的电容并联一个0.1µF电容旁路至GND。
18DOR数据超量程指示。DOR输出用来指示模拟输入电压超量程。DOR为高电平时,表明模拟输入电压超出范围。DOR为低电平时,表明模拟输入电压在量程以内。
19D13CMOS数字输出,第13位(MSB)。
20D12CMOS数字输出,第12位。
21D11CMOS数字输出,第11位。
22D10CMOS数字输出,第10位
23D9CMOS数字输出,第9位。
24D8CMOS数字输出,第8位。
25D7CMOS数字输出,第7位。
26D6CMOS数字输出,第6位。
27D5CMOS数字输出,第5位。
28D4CMOS数字输出,第4位。
29D3CMOS数字输出,第3位。
30D2CMOS数字输出,第2位。
31D1CMOS数字输出,第1位。
32D0CMOS数字输出,第0位(LSB)。
33DAV数据有效输出。DAV是输入时钟经占空比补偿校正后的单端输出,DAV的典型应用是将ADC的输出数据锁存至后端的数字电路。
37PD关断输入。将PD强制置高,器件进入关断模式。正常工作时PD置低。
38REFOUT内部基准电压输出。采用内部基准电压时,REFOUT直接连至REFIN,或通过一个电阻分压器设定REFIN输入电压。REFOUT通过一个≥0.1µF的电容旁路至GND。
39REFIN基准电压输入。在内部基准模式和带缓冲的外部基准模式,REFIN通过一个≥0.1µF的电容旁路至GND。此时,VREFP - VREFN = VREFIN x 3/4。在无缓冲的外部基准模式下,REFIN连至GND。
40G/ /T输出格式选择输入。G/ /T接GND为二元补码格式输出。G/ /T接与OVDD或VDD为格雷码格式输出。
-EP裸焊盘。通过裸焊盘实现与地的低电感连接。将EP连至GND以保证设计性能。PCB顶层和底层的地平面通过多个过孔连接。


01




一般性建议





  • 一般而言,采用带整体地层和电源层的多层PCB可获得最佳信号完整性
  • MAX12555需要高速布板技术,包括裸焊盘可靠接地。
  • 保持MAX12555模拟部分的内层地平面完整性,空隙(void)必须最少。过孔交错排列,保持非常小的过孔间隙,将空隙减少到最低程度。另外,在关键元件下方应布设完整的地,尤其是接引脚1和引脚2的REF电容、接引脚3 的COM旁路电容、接模拟信号输入引脚5和引脚6的小电容。
  • 将不同的输入和输出信号限定在不同的PCB层,如:所有模拟信号输入位于X层、所有数字信号输出位于Y层、所有时钟信号位于Z层等。尽量将每一层夹在两层地之间或使用微带线。
  • 使用与地相对的电源平面来减小信号感应,将总体噪声降至最低。功率走线应宽一些,以降低IR压降和电感。
  • 对于GND和VDD (电源线),建议采用多个18mil规格的过孔。
  • MAX12555的所有GND和裸焊盘(EP)必须连至同一地平面。MAX12555依靠EP实现与地的低电感连接,通过多个过孔连至指定地层。所需的过孔数量取决于孔的尺寸。作为指导原则,Maxim建议采用5 x 5 (总共25个)矩阵的13mil规格的过孔。最少需要12个过孔。
  • MAX12555最关键的输入、输出是模拟信号输入、基准引脚、时钟和数字输出。最关键的引脚是1、2、3、5、6、9、10、38和39。
  • ADC周围连接旁路电容和关键电容的走线应尽可能的宽,以减小电阻和电感。建议采用宽度大于或等于10mil的走线。如果元件无法直接连至地平面,则其接地线应尽可能宽。这还应包括PCB设计中的接地热焊盘。
  • 如果旁路电容使用热焊盘与GND连接,每个旁路电容使用两个热焊盘,GND端使用过孔以减小电感。
  • 高速数字信号走线应远离敏感的模拟信号线、时钟线、REFP (引脚1)和REFN (引脚2)。
  • 所有信号线(包括REFP和REFN)都应尽可能短并且避免90°折线。
  • 确保差分模拟输入网络对称,并且所有寄生效应是均衡的。
  • 所有旁路电容应尽可能靠近器件,最好在PCB同侧,可采用表贴器件减小电感(在下面的布板建议中有更详细的介绍)
  • 通常所有GND旁路过孔尺寸应为18mil。
  • 为实现最佳性能,需要独立的模拟和数字电源。
  • MAX12555可接受差分或单端时钟输入。
  • MAX12555可接受差分或单端模拟输入,差分输入可提供最佳性能。
  • EP作为器件的主要接地途径,必须正确连接到指定地平面。
  • 使用地线“隔离”ADC电路和PCB上的其它任何相邻电路。例如:一个PCB上有多个ADC时,利用地平面将每个ADC的相关电路隔离开来。


02




电路设计建议





  • (引脚1,REFP):通过一个位于PCB顶层的高频陶瓷电容(最大1.0µF)将REFP旁路至GND。所有REFP走线应尽可能短。

  • (引脚2,REFn):通过一个位于PCB顶层的高频陶瓷电容(最大1.0µF)将REFP旁路至GND。所有REFP走线应尽可能短。
  • (引脚1,REFP和引脚2,REFN):REFP和REFN之间并联两个容值分别为10µF和1µF的高频陶瓷电容。与引脚1和引脚2连接的任何电容都必须具有良好的高频性能。
  • (引脚3,COM):COM通过一个高频性能良好的2.2µF陶瓷旁路至GND。
  • (引脚5 & 6,INP & INN):为获得最佳总体AC性能,这些引脚与地之间都应接并联电容,容值依应用而定,范围为5.6pF到12pF。这些电容值可被包含在任何驱动ADC的抗混叠滤波器谐振电路中,并且应被放在电路板顶层。
  • (引脚12-15,36,VDD):使用高频性能良好的0.1µF和2.2µF陶瓷电容各一个并联,将VDD旁路至GND。
  • (引脚17,34,OVDD):使用高频性能良好的0.1µF和>2.2µF陶瓷电容各一个并联,将OVDD旁路至GND。
  • (引脚19-32,D13-D0):包括数据输出引脚与各自负载的串联电阻。这些电阻可限制从输出逻辑驱动器进入芯片内部GND的高频边沿电流。选定的阻值与负载电容一起产生的RC时间常数约为1ns。Maxim公司采用非常小而且低成本的电阻阵列,基本是多只0402电阻构成一组。评估板使用的是Panasonic公司的EXB-2HV-221J。
  • (引脚38,REFOUT):采用内部基准时,REFOUT直接与REFIN连接,或通过一个电阻分压器设定REFIN输入电压。REFOUT通过一个高频性能良好、≥0.1µF的陶瓷电容旁路至GND。
  • (引脚39,REFIN):在内部基准模式和带缓冲的外部基准模式,REFIN通过一个 ≥0.1µF的电容旁路至GND。在无缓冲的外部基准模式下,REFIN连至GND。

图2. 评估板器件原理图

图3. 评估板模拟部分原理图

03




布板建议





  • 将MX12555放置在PCB顶层。
  • 接着,在引脚1与引脚2之间放置一个1µF电容。该电容应位于PCB顶层,并且尽量靠近这两个引脚。REFP和REFN (引脚1、2)之间跨接的电容应在制造公差允许范围内尽量靠近DUT。
  • 下一步,放置引脚1至地和引脚2至地的旁路电容。这些电容应尽可能靠近共用的1µF电容,同时用过孔将电容的GND一端与指定模拟地相连(也与器件EP相连)。如果第二层有一个地平面,则该地平面应延伸到这三个器件的下方以减少引脚1和引脚2上的电感。对于REFP和REFN旁路电容的接地过孔,Maxim公司采用18mil的钻孔直径,选择较大尺寸是因为过孔电镀后会减小3mil。孔的最终尺寸应为约为15mil。
  • 接下来,在引脚1与引脚2之间放置一个10µF电容。如果顶层没有足够空间安装此电容,也可以像评估板那样把它放在PCB底层,利用过孔传输信号。该电容与器件引脚间的走线总长应减至最小。
  • 与引脚1和引脚2连接的走线应尽可能短,并且应当是匹配的。即:它们应当是对称的,而且长度应相同。
  • 接着,放置引脚3至GND的2.2µF电容,尽可能靠近器件。如果需要,该电容可放在PCB底层,采用13mil过孔与引脚3连接。走线应尽可能短。
  • 所有GND引脚(引脚4、7、16和35)应与MAX12555器件下方的覆铜相连。
  • 应遵循以下原则:正确连接MAX12555的EP与指定接地层(最好是第二层),需要使用足够多的过孔以降低电感,过孔数量取决于孔的尺寸。作为指导原则,Maxim公司建议采用5 x 5 (总共25个)的13mil过孔矩阵,最小过孔尺寸应为12mil。
  • 模拟输入应是均衡的。也就是说,从驱动源(放大器和滤波器等)到差分输入端的走线应该等长,元件布局应相互对称,这样,所有的寄生参数才会均衡。走线长度应尽可能短,以降低电感、减小干扰。
  • 将输入引脚5和引脚6的旁路电容放置在PCB顶层靠近器件引脚的位置,尽量减小走线长度。
  • 应使用某一层(最好是第二层)作为可靠的模拟接地层,推荐使用过孔阵列将其与MAX12555的EP连接。
  • 时钟布线建议(引脚9和引脚10):
    时钟输入与模拟输入和基准一样敏感。应像对待模拟信号那样对时待时钟信号。避免将时钟线靠近任何数字输出信号线。如果板上有多个ADC,则需隔离时钟线对,以尽量降低噪声并减小来自其它ADC的干扰。时钟信号线不应与数字输出信号线布在同一层。如果布在同一层,应尽量使这两类信号线之间保持较大间距,并在这两类信号线之间布隔离的GND,以降低可能产生的任何耦合。

建议采用典型值为1.4VP-P的差分时钟输入,这是器件的特性之一。但时钟输入信号摆幅的峰值并不是最重要的,保证快速上升和下降时间的摆率更重要。另外,内部差分放大器可提供增益,对信号进一步整形。评估板采用一个中心抽头变压器放大时钟输入,以确保快速上升和下降时间,然后再用二极管将摆幅限制在1.4VP-P。对于单端时钟信号来说,边沿应较陡,并且满足数据资料规定的最高和最低电压要求,即逻辑高电平最低为0.8VDD,逻辑低电平最高为0.2VDD。时钟共模电压(1/2VDD)由内部提供。推荐的接口电路/驱动器逻辑:任何逻辑输入,包括CMOS、LVPECL、LVDS都可用于驱动时钟输入。对于高频输入信号的应用,建议采用非常高速的LVPECL时钟分配电路,如MAX9320 PECL缓冲器。

  • 引脚12-15,36,VDD:最好将0.1µF的旁路电容放在器件引脚旁。
  • 引脚17,34,OVDD:最好将0.1µF的旁路电容放在器件引脚旁。
  • 数据线(引脚19至引脚32):对于输出数椐引脚,从ADC到缓冲器或负载IC的走线应尽量短。串联电阻尽可能靠近ADC,为确保最佳性能,总负载电容应等于10pF。而保证缓冲器或负载IC的地与MAX12555的EP可靠连接,对于实现最佳的AC性能非常重要。如果将数椐线布在顶层或底层(采用微带线技术),则相邻层必须是地层,以形成有效传输线。如果将数据线布在内层(采用带状线技术),则其相邻各层必须为地电位以形成有效传输线。数字信号输出应紧密排列在单一总线内以控制电流回路。另外,尽量减小MAX12555与数字负载间的接地层空隙(由数字信号过孔产生),当数据线进入内层时,过孔应交错排列。
  • REFOUT和REFIN (引脚38和引脚39)的旁路电容必须靠近器件引脚,使用短的走线直接与器件接地层相连。

图4. 评估板顶层丝印和元件布局

图5. 评估板底层丝印和元件布局

总结:本应文是器件和评估板数据资料的补充,用户可在应用中根据提供的建议优化器件性能。



声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 106浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 98浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 111浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 93浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 95浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 99浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 113浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦