使用51单片机和DS1302时钟芯片做一个简易的电子时钟

原创 嵌入式悦翔园 2023-02-23 11:40

关注星标公众号,第一时间获取信息

一、前言

今天给大家推荐一个51单片机小实验,带你使用51单片机做一款简易的电子时钟,其中计时模块采用DS1302硬件模块,显示采用LCD显示屏,具体怎么实现开来一起看看吧!

二、DS1302模块介绍

DS1302 是 DALLAS 公司推出的涓流充电时钟芯片,内含有一个实时时钟和31字节静态 RAM,通过简单的串行接口与单片机进行通信。实时时钟、日历电路提供秒、分、时、日、周、月、年的信息,每月的天数和闰年自动补偿等多种功能。时钟操作可通过 AM/PM 指示,DS1302 与单片机之间能简单地采用同步串行的方式进行通信,简易三线SPI通信模式:

  • RES 复位
  • I/O 数据线
  • SCLK 串行时钟

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如MSP430单片机系列处理器。

DS1302时钟芯片的工作原理如下:

  • DS1302芯片内部有一组定时器和寄存器,通过这些寄存器可以实现时钟的读写操作。
  • DS1302通过三根引脚与外部设备连接,分别是RST、DAT和CLK。RST引脚用于复位
  • DS1302,DAT引脚用于数据传输,CLK引脚用于时钟信号。
  • DS1302芯片使用BCD码表示时间信息,即用4位二进制数表示一个十进制数。例如,分的BCD码为00H到59H。

三、驱动DS1302的代码

以下是使用51单片机驱动DS1302时钟芯片的代码,具体实现步骤如下:

3.1 初始化DS1302时钟芯片

void DS1302Init() {
    // 初始化DS1302时钟芯片
    DS1302WriteByte(0x8E0x00);
    // 关闭写保护
    DS1302WriteByte(0x900x00);
}

3.2 读取DS1302时钟芯片的时间

void DS1302ReadTime(unsigned char *p) {
    // 读取DS1302时钟芯片的时间
    unsigned char i;
    DS1302WriteByte(0xBF0x00);
    for (i = 0; i < 7; i++) {
        p[i] = DS1302ReadByte();
    }
}

3.3 设置DS1302时钟芯片的时间

void DS1302WriteTime(unsigned char *p) {
    // 设置DS1302时钟芯片的时间
    unsigned char i;
    DS1302WriteByte(0xBE0x00);
    for (i = 0; i < 7; i++) {
        DS1302WriteByte(p[i], 0x00);
    }
}

3.4 读取DS1302时钟芯片的RAM

// 从DS1302读取一个字节的数据
void DS1302ReadByte(uchar *dat) {
    uchar i;

    for (i = 0; i < 8; i++) {
        SCLK = 0;
        _nop_();
        *dat |= IO << i;
        SCLK = 1;
        _nop_();
    }
}

四、读取DS1302时钟芯片的RAM

DS1302时钟芯片有31个字节的RAM空间,可以用来存储一些数据。在实际应用中,我们可能需要读取这些存储的数据。读取DS1302的RAM和读取寄存器类似,也需要先向DS1302发送读取RAM的命令,然后再读取RAM的内容。

读取DS1302的RAM需要使用到DS1302的另一个引脚——CE(片选使能)引脚,该引脚在读写DS1302的RAM时需要保持为低电平。读取RAM的过程如下:

4.1 发送读取RAM的命令

向DS1302写入读取RAM的命令:0x61。DS1302会自动切换到RAM读取模式,准备将RAM中的数据传输给单片机。

DS1302Write(0x61); // 发送读取RAM命令

4.2 读取RAM的内容

发送读取RAM命令后,就可以读取RAM中的数据了。读取RAM的数据需要先读取DS1302的数据引脚(IO引脚)上的高电平脉冲,然后再读取8个位的数据。具体的读取过程可以使用DS1302ReadByte函数实现,该函数会读取一个字节的数据。

for (i = 0; i < 31; i++) {
    DS1302ReadByte(&byte); // 读取一个字节的数据
    ram[i] = byte; // 存储到数组中
}

读取完RAM后,我们可以将其存储到一个数组中,方便后续的使用。

4.3 读取部分单独代码实现(注重逻辑)

#include 
#include 

#define uchar unsigned char
#define uint unsigned int

sbit SCLK = P2^0;
sbit IO = P2^1;
sbit CE = P2^2;

uchar ds1302_read_ram(uchar address)
{
    uchar i, dat;
    
    CE = 0;
    _nop_();
    SCLK = 0;
    _nop_();
    CE = 1;
    _nop_();
    
    IO = 0// 写指令
    SCLK = 0;
    _nop_();
    SCLK = 1;
    _nop_();
    IO = address | 0xc0// 选择地址并读取 RAM
    for (i = 0; i < 8; i++) {
        SCLK = 0;
        _nop_();
        SCLK = 1;
        _nop_();
    }
    IO = 0// 接收数据
    for (i = 0; i < 8; i++) {
        dat >>= 1;
        if (IO) dat |= 0x80;
        SCLK = 0;
        _nop_();
        SCLK = 1;
        _nop_();
    }
    CE = 0;
    
    return dat;
}

在上述代码中,ds1302_read_ram 函数接收一个参数 address,用于指定要读取的 RAM 地址,返回一个字节表示该地址处的 RAM 数据。

该函数的具体实现过程如下:

  • 置 CE 为低电平,并延迟一段时间。
  • 置 SCLK 为低电平,并延迟一段时间。
  • 置 CE 为高电平,并延迟一段时间。
  • 置 IO 为低电平,表示写指令。
  • 置 SCLK 为低电平,并延迟一段时间。
  • 置 SCLK 为高电平,并延迟一段时间。
  • 置 IO 为 address | 0xc0,即选择地址并读取 RAM。
  • 依次进行 8 次时钟上升沿,在每个上升沿时读取数据位。
  • 置 CE 为低电平。
  • 返回读取到的数据。

需要注意的是,读取 RAM 数据时需要将地址的最高位(即 bit7)置为 1,以表示要读取 RAM。另外,在读取数据位时需要依次进行 8 次时钟上升沿,且每次读取时需要先右移数据,再将新数据左移并或上读到的数据位。

五、整体代码实现

下面是使用51单片机和DS1302时钟芯片实现的简易电子时钟的代码实现。代码中包含了DS1302的初始化、时钟读取、RAM读写等基本功能。

#include 
#include "LCD1602.h"
#include "DS1302.h"

#define uchar unsigned char
#define uint unsigned int

sbit beep=P3^6;     //定义蜂鸣器接口

void main()
{
    uchar year, month, day, hour, minute, second;  //年月日时分秒
    uchar str_data[11], str_time[11];              //用于存放LCD上显示的日期和时间

    LCD_Init();  //初始化LCD显示屏
    DS1302_Init();  //初始化DS1302时钟芯片

    //将时间初始化为2023年2月21日0时0分0秒
    DS1302_Write(0x8e,0);   //关闭写保护
    DS1302_Write(0x80,0x23);   //年份
    DS1302_Write(0x82,0x02);   //月份
    DS1302_Write(0x84,0x21);   //日期
    DS1302_Write(0x86,0x00);   //时钟
    DS1302_Write(0x88,0x00);   //分钟
    DS1302_Write(0x8a,0x00);   //秒钟
    DS1302_Write(0x8e,0x80);   //开启写保护

    while(1)
    {
        //读取DS1302时钟芯片中的年月日时分秒
        year = DS1302_Read(0x80);
        month = DS1302_Read(0x82);
        day = DS1302_Read(0x84);
        hour = DS1302_Read(0x86);
        minute = DS1302_Read(0x88);
        second = DS1302_Read(0x8a);

        //将年月日时分秒转换成字符串
        sprintf(str_data, "Data: 20%02x-%02x-%02x", year, month, day);
        sprintf(str_time, "Time: %02x:%02x:%02x", hour, minute, second);

        //在LCD上显示日期和时间
        LCD_Write_String(0,0,str_data);
        LCD_Write_String(0,1,str_time);

        Delay_Ms(1000);  //延时1秒
    }
}

六、显示效果

推荐阅读



01

加入嵌入式交流群


02

嵌入式资源获取


03

STM32中断优先级详解


04

STM32下载程序新思路--使用串口下载程序


嵌入式悦翔园 专注于嵌入式技术,包括但不限于STM32、Arduino、51单片机、物联网、Linux等编程学习笔记,同时包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论 (0)
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 52浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 58浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 56浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 71浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 60浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 73浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 88浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 158浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 58浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 149浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦