锁相环中的相位噪声建模、仿真和传播(一)

原创 摩尔学堂 2023-02-21 13:00


你会学到什么:

  • 相位噪声的一些简要理论和典型测量。

  • 大多数 CAD 应用程序使用的 PLL 相位噪声的标准分析。

  • 如何在 PLL 输出端产生最低的相位噪声。

  • 典型 2 类二阶环路的标准设计程序。

锁相环 (PLL) 在当今的高科技世界中无处不在。几乎所有商业和军用产品都在其运行中使用它们,相位(或 PM)噪声是一个主要问题。频率(或 FM)噪声密切相关(瞬时频率是相位的时间导数)并且通常在相位噪声的保护伞下考虑(也许两者都可以被认为是“角度噪声”)。幅度(或 AM)噪声是另一个考虑因素。

虽然两者都会影响 PLL 性能,但振幅噪声通常是自限性的,不会产生任何影响。因此,PLL 输出和 RF 组件的相位噪声是主要问题。当然,输出相位噪声是最重要的问题——它主要取决于每个组件的相位噪声。

许多因素都会导致元件相位噪声,例如电源、EMI 和半导体异常等等。了解这些因素使我们能够实施组件相位噪声的缓解策略,并最终实施输出相位噪声。

我们讨论的 PLL 属于模拟硬件类型,而不是数字或软件类型。这种 PLL 的一般拓扑结构是一个单环路系统,其中包含精密参考、参考分频器、反馈分频器、可能的预分频器、电压或电流(也称为电荷泵)鉴相器、环路滤波器和压控振荡器 (VCO) . 这些组件可能都是分立的,或者其中一些可能包含在 IC 中。无论如何,我们展示了如何分析一般的相位噪声,以及 RF 分量相位噪声如何通过 PLL 传播以确定其输出相位噪声。

在第 1 部分中,我们讨论了相位噪声的一些简要理论和典型测量及其分析(建模、仿真和传播),并详细展示了大多数计算机辅助设计 (CAD) 应用程序使用的方法。


相位噪声的简要理论和典型测量

相位噪声是一个重要而复杂的课题,研究正在进行中,对其起源的理解也很脆弱,数学基础也有问题。然而,许多近似值和变通方法被用来产生极好的理论和实践结果。1,2,3这是一个成熟的学科,有很多可用的文献。有几种仪器可以精确测量相位噪声,并且无数带有 PLL 的现场系统都具有受控的相位噪声特性。

在这里,我们简要回顾时域和频域中的相位噪声理论,以及基带 (BB) 领域(对 RF 载波信号进行相位调制的 BB 噪声信号)和 RF 领域(RF由 BB 噪声信号进行相位调制的载波信号)。

此外,我们还总结了频域中两个领域的典型相位噪声测量,当然,它们是同一现象的不同等效表示,并给出相同的结果。

BB 领域被认为是不太重要的领域,但对于相位噪声的起源很重要,并且提供比 RF 领域更好的测量精度。RF 领域被认为是更重要的领域,并且对相位噪声的可观察表现很感兴趣,尽管它的测量精度不如 BB 领域。1,8此外,我们调查了两种测量类型的等效性。

正如所有物理学中众所周知的那样,存在确定性和非确定性(也称为随机、随机或概率)过程。在 PLL 中,这些过程是信号,可以在时域和频域两个域中表示,两个域通过傅立叶变换通过变换理论相关联。

要使用(在本例中为连续)变换理论,系统被建模为(连续)线性时不变网络,这意味着 PLL 必须处于锁定状态。相反,处于解锁状态的 PLL 模型是非线性的;因此,不能应用变换理论。

此外,域之间的转换对于确定性信号是直接的,对于随机信号是间接的。直接意味着直接在时域和频域之间进行变换,因为存在直接变换。间接是指域之间的转换有一个中间步骤,就是计算随机信号的自相关函数,取其时间平均,然后进行变换,因为直接变换是不存在的。6个

然后,在 RF 系统或 RF 组件中,当已知和未知来源的内部和/或外部 BB 随机(噪声)信号对系统或组件的内部 RF 确定性(载波)进行相位调制时,会产生相位噪声) 信号。当然,相位噪声是一种随机现象或信号,因此充满了间接变换。

通常,对于频域中的随机信号,作为电压谱密度 (VSD) 的频谱是不存在的。然而,频谱确实以功率谱密度 (PSD) 的形式存在,只有幅度信息而没有相位信息。相比之下,对于频域中的确定性信号,频谱通常确实以 VSD 形式存在,具有幅度和相位信息,当然,扩展后也具有 PSD。

此外,在 BB 领域的频域中,频谱是低通(或准低通)函数,而对于 RF 领域,频谱是带通函数。此外,在本次讨论中,我们仅使用正单边 (OS) 频谱和正单边带 (SSB) 相位噪声信息,而不是双边 (TS) 频谱和双边带 (DSB) 相位-噪音信息。

我们还注意到,在时域中,相位噪声通常称为相位抖动,而在频域中,它通常称为规定相位噪声。这两个域中的现象通过瞬时频率定义为相位的时间导数而相关联。1,8,10

考虑到上述背景,我们简要回顾了时域和频域的一些理论以及BB 领域 域之间的转换。在这个领域,我们的理论和分析原则上基本上存在,因为我们的随机(噪声)信号在时域(这是我们的分析开始的地方)没有解析表达式。因此,经过变换后,频域上没有解析表达式。我们有以下数学表示和变换步骤:6,7,8

1.时域函数或相位波形,它是一个真实的(非复杂的)随机过程,具有零均值高斯概率密度函数,ϕ(t)

其中t是时间。

2. (1)的自相关函数,ϕ (t, τ)

其中τ是测量之间的正时间增量,E op {...}是统计平均运算符。

3. 等式 2 的时间平均值的傅立叶变换,给出非归一化 (UN) BB频域函数或 PSD,ϕ ( ξ)WdB ϕ( ξ)

其中ξ是频率,A op {...}是时间平均算子,F op {...}是傅里叶变换算子。典型的相位波形图及其 UN BB PSD如图 1a 和 1b所示

1. (a) 基带 (BB) 相位波形 ϕ(t),(b) 非归一化 (UN) BB 功率谱密度 (PSD),Wdb ϕ (ξ),(c) 的相位噪声理论中的典型图) RF 电压波形 v(t),以及 (d) UN RF PSD,Wdb v (ξ)。

接下来,我们简要回顾时域和频域中的类似理论以及射频领域的域间转换。在这个领域,我们的理论和分析是相当分析的,因为在时域中我们的确定性(载波)信号有一个相当分析的表达式(这又是我们分析的起点)。因此,经过变换后,在频域上有一个相当解析的表达式。

对于≤ 0.2 弧度(≤ 11.5°)的“合理”相位波形偏差(也称为小角度...、小调制指数...或窄带 PM...近似值),其中 PM 频谱与DSB AM 频谱——这是所有实际相位噪声问题的情况——我们有以下数学表示和变换步骤(为简洁起见未显示细节):7、8、10

4.时域函数或电压波形(也是BB参数的函数),v(t)

其中V是统计平均振幅,0是载波频率,Θ是初始相位(V是一般振幅的特例,V + a(t),其中a(t)是统计零均值a(t) = 0的振幅噪声,因为如前所述,它是自我限制的并且没有任何后果):

5. 等式 4 的自相关函数(同样也是 BB 参数的高斯概率密度函数),v ( τ )

其中φ (0)φ ( τ) ,其中τ = 0,这是φ(t)的方差

6. 等式 4 的时间平均值的傅立叶变换(同样也是 BB 参数的函数)给出 UN RF频域函数或 PSD,v ( ξ)WdB v ( ξ)

其中ξ– 0 )是 Dirac delta 或单位脉冲函数,ϕ ( ξ– 0 )是 UN BB PSD,ϕ ( ξ),通过调制过程从 BB 领域转换到 RF 领域。典型的电压波形图及其 UN RF PSD如图 1c 和 1d所示

需要注意的是,如果ϕ(t)是严格平稳的(一个合理的假设),则可以证明v(t)至少是广义平稳的。在这种情况下,Weiner-Khinchin 定理成立,ϕ (t, τ )v (t, τ )仅成为 τ 的函数,[ ϕ (t, τ ) → ϕ ( τ )v (t, τ ) → v ( τ )],因此不需要找到ϕ ( τ )v ( τ )的时间平均值。因此,ϕ ( ξ)v ( ξ)是ϕ ( τ )v ( τ )本身的傅里叶变换1,6,7,9

然后,根据上述简要理论,我们总结了频域中 BB 和 RF 领域相位噪声的典型测量。

BB 领域的测量

在上面的 UN BB PSD 中,选择了一个特定的频率,并将其在 1 Hz 带宽中的功率除以低通频谱上的总积分功率,得到归一化 (NM) BB PSD,L ϕ ( ξ )LdB ϕ ( ξ)

其中ξ是特定频率,z是总积分低通功率,dBz 是相对于z的分贝数。测量是间接的,使用信号源分析仪,解调、测量、处理和显示 BB 信号以产生ϕ ( ξ)LdB ϕ ( ξ) [ ϕ ( ξ)包含 DSB 信息,因此因子ϕ ( ξ)的计算需要 2给 SSB 信息]。它被认为比在 RF 领域所做的更准确。1,8

射频领域的测量

在上面的 UN RF PSD 中,选择了一个特定的载波偏移频率。它在 1 Hz 带宽内的功率除以带通频谱上的总积分功率,得到 NM RF PSD、v (f)LdB v (f)

其中f是载波的特定偏移频率 ( f = ξ − f 0其中ξ≥ 0 ), c是总积分带通功率,dBc 是相对于c的分贝数。测量是直接的,使用具有相位噪声处理能力的频谱分析仪测量、处理和显示射频信号以产生v (f)LdB v (f)它被认为不如在 BB 领域中所做的那样准确。1,8

两种测量的等效性

如前所述,ϕ ( ξ)LdB ϕ ( ξ)v (f)LdB v (f)是同一现象的不同表示,逻辑上应该对所有实际相位噪声问题给出相同的结果(其中,也如前所述,相位偏差被认为是“合理的”)。因此,对于这种情况,它们是等价的并且给出相同的结果,称为 NM PSD、L(f)LdB(f)BB 和 RF 领域下标 ( ϕv) 被删除并且不使用下标(即使是“合理”条件也有一些异常,必须使用具有学术和实践论据的近似值):1,10

其中,典型显示的f是 x 轴载波的偏移频率,单位为 Hz,对数标度,LdB(f)是 y 轴的 NM RF PSD,单位为 dBc/Hz,线性标度规模,对于上述间接和直接测量,最终将一切与 RF 领域相关联(图 2)

2. 频域中基带和射频领域相位噪声的典型测量。

需要注意的是,如果不满足“合理”条件,则必须使用贝塞尔函数数学将ϕ ( ξ)v (f)联系起来。因此,这两种测量不会等同,会给出不同的结果,并且会被认为是灾难性的问题。

相位噪声的分析(建模、仿真和传播)


3. 用于相位噪声分析(建模、仿真和传播)的一般相位噪声模型。

有了以上信息,我们现在开始分析 PLL 中的相位噪声,以及一般如何对其进行建模和仿真。还讨论了 RF 分量相位噪声如何通过 PLL 传播以确定其输出相位噪声。通常,相位噪声可以使用“通用相位噪声模型” (图 3)及其标准整数幂级数进行有效建模:

其中h是加权系数,f是载波的偏移频率。1,7然后使用任何标准应用程序对其进行仿真(在本例中,我们使用 MATLAB)。最后,组件相位噪声通过 PLL 的传播以确定其输出相位噪声是使用通用 PLL 模块“图表和相位噪声传播模型”完成的(图 4)

4. 用于相位噪声分析(建模、仿真和传播)的通用 PLL 框图和相位噪声传播模型。

此外,为了简化分析,所有组件的相位噪声都近似为不相关(合理的假设),以便它们的 NM PSD 直接相加,而不必处理相关信号,这会使分析变得非常复杂。然后使用以下相位噪声分析程序进行分析:4,5

1. PLL 必须表示为(在本例中为连续的)线性时不变网络,这意味着它必须锁定在其输出之一。

2. 所有组件的相位噪声必须近似为不相关。

3. 每个组件的相位噪声图都是从其数据表中获得的,“通用相位噪声模型” (图 3)适合每个组件的图,以确定匹配的通用模型的部分(其中一些可能不存在)每个组件的情节。

4. 对于每个组件的拟合通用相位噪声模型,一个相位噪声点,LdB j (f k ) ( j,k = 0,a; ,b ; 2,c ; 3,d ; 4,e ),在每个获得段用于计算(通常使用段内的中点)。将所有对数值转换为线性值,LdB j (f k ) Þ j (f k )

5. 每个组件的拟合通用相位噪声模型系数j是使用来自步骤 4 的相位噪声点(其中一些可能为零)计算的:

6. 来自步骤 5 的每个组件的拟合通用相位噪声模型系数j用于形成每个组件的相位噪声模型ci (f)

可以对其进行模拟以产生分量相位噪声曲线。

7. 来自步骤 6 的每个组件的相位噪声模型ci (f)乘以其适用的传递函数(输出或误差;稍后讨论)幅度平方,| T(f) | 2,得到其传播的相位噪声模型,co (f)

可以对其进行模拟以产生组件传播的相位噪声曲线。

8. 来自步骤 7 的每个组件的传播相位噪声模型co (f)与所有其他相加在一起以获得输出相位噪声模型L(f)

可以对其进行仿真以产生输出相位噪声曲线。

这就是我们的相位噪声分析(建模、仿真和传播)过程。如前所述,这是大多数 CAD 应用程序用于相位噪声分析的方法。

参考

1. FM Gardner,“Phaselock Techniques”,第 3版,John Wiley,新泽西州霍博肯,2005 年。

2. RE Best,“锁相环、设计、仿真和应用”,第 6版,McGraw-Hill,纽约,纽约,2007 年。

3. PV Brennan,“锁相环:原理与实践”,McGraw-Hill,纽约,纽约,1996 年。

4. E. Drucker,“无线工程师的锁相环和频率合成”,1997 年,频率合成和锁相环设计,3 天短期课程,Besser Associates,加利福尼亚州山景城,1999 年。

5. FC Weist,“频率合成器应用的锁相环基础知识”,短期课程,马里兰州克拉克斯堡,2011 年。

6. PZ Peebles, Jr.,“概率、随机变量和随机信号原理”,McGraw-Hill,纽约,纽约,1980 年。

7. A. Godone、S. Micalizio 和 F. Levi,“具有任意斜率随机相位调制的载波的射频频谱”,Istituto Nazionale di Ricerca Metrologic,INRIM,Strada delle Cacce 91,10135 Torino,意大利,Metrologia ,卷。45,第 313-324 页,BIPM 和 IOP Publishing Ltd.,布里斯托尔 BS1 6HG,英国,2008 年 5 月。

8. B. Nelson,“相位噪声 101:基础知识、应用和测量”,Keysight Technologies,2018 年。

9. A. El Gamal,EE278 讲义 7:“平稳随机过程”,斯坦福大学工程学院电气工程系,加利福尼亚州斯坦福,2015 年秋季。

10. KJ Button 编辑,红外线和毫米波,第 11 卷:毫米波元器件和技术,第三部分,第 7 章:“频域中的相位噪声和 AM 噪声测量”,AL Lance、WD Seal 和 F. Labaar, TRW 运营和支持小组,一个太空公园,加利福尼亚州雷东多海滩,学术出版社,马萨诸塞州剑桥市,1984 年。


摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 180浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦