串口屏遐想

TopSemic嵌入式 2023-02-21 08:00

故事是这样的,最近支持某客户使用littleVGL开发一款带显示效果的产品,由于之前没有相关经验,担心会有问题。没想到,使用GUI-Guider后很快就完成了相关应用的设计开发。于是乎突发奇想,是否可以让GUI-Guider变成串口屏的组态工具呢?

1. 什么是串口屏

我们先来认识下串口屏,字面意思就是带串口的屏,最核心有两个功能:

  1. 可以通过PC端设计屏幕显示界面
  2. 可以通过串口修改屏幕显示内容

直白的讲,就是屏幕用于显示,显示的数据源来自串口的对端设备

1.1 组态串口屏

很早以前,工业现场有时需要HMI,为工作人员提供便捷的操作环境,但不同的应用现场有不同的操作界面,有组态软件经验的厂商就想到了用嵌入式板卡跑WinCE的方案,这样很容易将Windows中的代码移植过来,用户只需要在Windows端的组态工具根据现场应用进行组态,然后将生产的工程文件,对象文件,数据库等文件下载到WinCE对应的板卡中即可实现所见即所得的显示开发过程。

后来也有厂商使用Cortex-A8+Linux+QT的方式实现该方案。这种串口屏还是比较贵的,毕竟使用的处理器平台,成本比较高。

由于该方案使用的组态软件,屏是串口协议的主设备,并且支持丰富的串口协议,比如各类的PLC,常见的西门子S7-200 PPI,三菱FX, 通用设备Modbus-RTU/TCP,各类仪表,变频器等。

屏的数据可以通过软件配置的方式与串口外设关联,先在设备窗口设定变量,之后在界面设计的时候关联变量即可

1.2 通用串口屏

之后又接触到了低成本的通用串口屏,这类串口屏与组态屏相同的一点是,都可以通过PC端软件进行界面设计。

区别在于价格更美丽,但该屏的串口是协议的从设备,并且一般仅支持一种协议(就像下面这种0x80~0x85这种),用户使用时需要通过外部MCU作为串口的主,并实现相关协议去修改显示画面的数据内容,具体框架可以参考下图:

2. 串口屏设计分析

2.1 组态屏设计

前面大概讲过,组态屏一般是把组态软件交叉编译到嵌入式板卡所支持的WinCE或Linux中运行,串口屏拆开后可以理解为一个嵌入式处理器的小电脑,处理器性能和树莓派应该差不多。如果有兴趣推荐大家可以研究一个开源方案pvbrowser,它可以在树莓派上运行,这个软件底层也是基于QT开发的,很早之前玩过,但是不花钱的东西看上去并不美好。

2.2 通用屏设计

要分析通用的设计,我们可以拆开看看,下面是两个不同公司的设计:

  1. 先看行业大佬的板子吧,上面基本看不到啥,都继承到一起了,外面还有颗SPI的flash用于存非易失的素材或参数

    这家公司自己开了个芯片,好像也支持有能力的客户做二次开发,网上能下到参考原理图和软件SDK。

  2. 换一个厂商,这家用的分离方案,MCU+FPGA+DRAM+NAND:

    大胆推测一些系统框架,下图是几种方案组合,最大的区别点在于,MCU, FPGA, Flash, DRAM之间的连接方式,主要是灰色和蓝色这两条路径:

    1. MCU作为推屏的核心器件,往往采用灰色路径,DRAM和Flash都挂在MCU上,FPGA仅实现显示驱动的作用,也可以用ILI9341/9488这种显示驱动芯片替代,该方案的瓶颈在MCU和驱动芯片之间的接口带宽以及MCU本身的处理性能,针对屏的尺寸比较大(分辨率比较高)或者需要动态显示效果的应用是一个考验。
    2. FPGA作为推屏的核心器件,采用蓝色路径,DRAM和Flash都挂在FPGA上,MCU主要起解析串口命令,并修改FPGA中双口RAM的功能(RAM区与屏幕数据源绑定),MCU可能还会使用FatFS来获取SDcard中PC端生成的文件,并将其解析后存储在Flash上。
      从实际效果看,这个产品可能使用方案b,因为普通的MCU主频较低,受带宽影响,大屏情况下很难实现较为流畅的动画效果。

3. GUI-Guider到串口屏

回到之前的想象,GUI-Guider是否可以成为用户组态工具,当前版本肯定是不行的,因为需要通过串口修改的数据在界面设计时并没有做地址关联,如果想做成组态串口屏,还需要设置从站参数信息。当然我们今天先从简单的通用串口屏入手,假设GUI-Guider后续会像VGUS那样提供数据地址关联的接口。

以默认的SliderProgress为例,我们先看GUI-Guilder能给我们提供什么:

这里以IAR为示例,导出工程。

可以得到以下的工程目录,最主要的就是红框中生成的部分,它包含了除littleVGL源码外的所有和屏幕相关的code

下来的操作就是将MCUxpresso SDK中的lvgl_demo_widgets_bm工程文件夹Copy到该目录,这样就可以成功编译该示例(IAR打开ewp文件后save workspace就可以生成eww文件)

我们现在要做的就是将这个IAR工程分成两个工程,其中一个由PC段编译生成和界面相关的代码(后称littlevgl_guider),另一个生成底层的刷屏和UART通信代码RuntimeSystem(后称RTS),大体结构如下:

通过对整体代码的分析可以看出,实际上要做到上面这种固件的分割,只需要将littlevgl_support.c这个文件拆成两部分即可。RTS和littlevgl_guider这两个固件之间通过在固定地址的指针函数结构体相互传递,如果有疑问的朋友可以参考《如何在MCU中使用二进制库》。

RTS中将和刷屏相关的函数结构体放到0x2000这个地址:

#define LCD_INTERFACE_ADDR		0x2000

typedef struct
{

    void (*DEMO_InitLcd)(void);
    void (*DEMO_InitLcdClock)(void);
    void (*DEMO_InitLcdBackLight)(void);
    void (*DEMO_FlushDisplay)(lv_disp_drv_t *, const lv_area_t *, lv_color_t *);
    void (*DEMO_InitTouch)(void);
    bool (*DEMO_ReadTouch)(lv_indev_drv_t *, lv_indev_data_t *);
    void (*AppTask)(void);
}
LCD_interface_t;

__root
const LCD_interface_t g_lcd_if @LCD_INTERFACE_ADDR =
{
.DEMO_InitLcd = DEMO_InitLcd,
.DEMO_InitLcdClock = DEMO_InitLcdClock,
.DEMO_InitLcdBackLight = DEMO_InitLcdBackLight,
.DEMO_FlushDisplay = DEMO_FlushDisplay,
.DEMO_InitTouch = DEMO_InitTouch,
.DEMO_ReadTouch = DEMO_ReadTouch,
.AppTask = AppTask
};

littlevgl_guider工程中的littlevgl_support.c函数可以通过指针函数调用RTS底层接口,这样就完成了RTS到littlevgl_guider的调用

#define LCD_INTERFACE_ADDR		0x2000
typedef struct
{

void (*DEMO_InitLcd)(void);
void (*DEMO_InitLcdClock)(void);
void (*DEMO_InitLcdBackLight)(void);
void (*DEMO_FlushDisplay)(lv_disp_drv_t *, const lv_area_t *, lv_color_t *);
void (*DEMO_InitTouch)(void);
bool (*DEMO_ReadTouch)(lv_indev_drv_t *, lv_indev_data_t *);
    void (*AppTask)(void);
}
LCD_interface_t;

#define LCD_IF ((LCD_interface_t *)(LCD_INTERFACE_ADDR))

/*-------------------------
* Initialize your display
* -----------------------*/

LCD_IF->DEMO_InitLcd();

同样的方式,在littlevgl_guider中通过定义指针函数结构体的方式共享LittleVGL的相关函数给RTS

#define LITTLEVGL_INTERFACE_ADDR	0x32000

__root const Littlevgl_interface_t g_lvgl_if @LITTLEVGL_INTERFACE_ADDR =
{
.littlevgl_Init = lvgl_Init,
.littlevgl_task = lvgl_task,
.littlevgl_tick_inc = lvgl_tick_inc,
.littlevgl_dis_flush_ready = lvgl_dis_flush_ready
};

在RTS中通过类似的方式实现littleVGL的刷屏

#define LITTLEVGL_INTERFACE_ADDR	0x32000

typedef struct
{

void (*littlevgl_Init)(void);
void (*littlevgl_task)(void);
    void (*littlevgl_tick_inc)(uint32_t );
    void (*littlevgl_dis_flush_ready)(lv_disp_drv_t *);
}
Littlevgl_interface_t;

#define LVGL_IF ((Littlevgl_interface_t *)(LITTLEVGL_INTERFACE_ADDR))

void AppTask()
{
    DEMO_SetupTick();
    LVGL_IF->littlevgl_Init();
for (;;)
{
while (!s_lvglTaskPending)
{
}
s_lvglTaskPending = false;

LVGL_IF->littlevgl_task();
}
}

两个不同的工程需要通过链接文件将它们Flash/Ram隔离开,最后还有一点需要注意的,如果仅仅通过函数指针调用littlevgl_guider函数是无法正常运行的,因为littlevgl_guider工程没有走cmain的过程,需要初始化的全局变量都没有进行初始化,所以RTS可以通过Bootloader加载APP的方式跳到littlevgl_guider中(但注意不要切SP,栈还用RTS的),让它走完初始化流程。

littlevgl_guider函数周期检查共享RAM的值,如果有变化,就更新变量到屏幕即可。下图是将整个工程拆分的示例

写在最后

不是所有的硬件平台都可以使用该方法,因为GUI Guilder目前是将固件和资源编译在一起的,所以如果图像资源(包括字库)比较大,则固件占用Flash也会很大,仅仅靠MCU内部Flash很难满足要求。i.MX RT系列是比好的选择,因为他支持XIP(通过AHB读取QSPI-FLASH),固件大小就不会受到制约,主频也够高,可以保证显示效果。


扫码加入嵌入式交流群:


TopSemic嵌入式 TopSemic,让芯片使用更简单。 专注分享:嵌入式,单片机,STM32,ARM,RTOS,Linux, 软硬件,半导体,电子技术等相关内容。
评论
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 183浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦