详解ChatGPT数据集之谜

智能计算芯世界 2023-02-21 07:45

——文末附ChatGPT专题下载——

51份专业报告

一些研究人员的报告称,通用人工智能(AGI)可能是从我们当前的语言模型技术进行演进 [1],预训练 Transformer 语言模型为 AGI 的发展铺平了道路。虽然模型训练数据集日渐增大,但缺乏基本指标文档,包括数据集大小、数据集 token 数量和具体的内容细节。
下载链接(文末附51份专业报告):
AIGC&ChatGPT发展报告
浙商证券:ChatGPT研究框架(2023)
ChatGPT芯片算力:研究框架

专题研究:ChatGPT:深度拆解(2023)

国泰君安:ChatGPT 研究框架(2023)

尽管业内提出了数据集组成和整理文档的标准 [2],但几乎所有重点研究实验室在揭示模型训练数据集细节这方面都做得不够。这里整合的研究涵盖了 2018 年到 2022 年初从 GPT-1 到 Gopher 的精选语言模型的所有数据集(包括主要数据集:Wikipedia 和 Common Crawl)的综合视图。
1、概述
图 1. 主要数据集大小的可视化汇总。未加权大小,以 GB 为单位。 
2018 年以来,大语言模型的开发和生产使用呈现出爆炸式增长。一些重点研究实验室报告称,公众对大语言模型的使用率达到了惊人高度。2021 年 3 月,OpenAI 宣布 [3] 其 GPT-3 语言模型被 “超过 300 个应用程序使用,平均每天能够生成 45 亿个词”,也就是说仅单个模型每分钟就能生成 310 万词的新内容。
值得注意的是,这些语言模型甚至还没有被完全理解,斯坦福大学的研究人员 [4] 最近坦言,“目前我们对这些模型还缺乏认知,还不太了解这些模型的运转模式、不知道模型何时会失效,更不知道这些模型的突现性(emergent properties)能产生什么效果”。
随着新型 AI 技术的快速发展,模型训练数据集的相关文档质量有所下降。模型内部到底有什么秘密?它们又是如何组建的?本文综合整理并分析了现代大型语言模型的训练数据集。
因为这方面的原始文献并不对外公开,所以本文搜集整合了二、三级研究资料,在必要的时候本文会采用假设的方式来推算最终结果。
在本文中,我们会将原始论文中已经明确的特定细节(例如 token 数量或数据集大小)归类为 “公开的(disclosed)” 数据,并作加粗处理。
多数情况下,适当地参考二、三级文献,并采用假设的方式来确定最终结果是很有必要的。在这些情况下,token 数量和数据集大小等细节是 “确定的(determined)”,并以斜体标记。
模型数据集可分为六类,分别是:维基百科、书籍、期刊、Reddit 链接、Common Crawl 和其他数据集。
表 1. 主要数据集大小汇总。以 GB 为单位。公开的数据以粗体表示。确定的数据以斜体表示。仅原始训练数据集大小。
1.1. 维基百科
维基百科是一个免费的多语言协作在线百科全书,由超过 300,000 名志愿者组成的社区编写和维护。截至 2022 年 4 月,英文版维基百科中有超过 640 万篇文章,包含超 40 亿个词 [5]。维基百科中的文本很有价值,因为它被严格引用,以说明性文字形式写成,并且跨越多种语言和领域。一般来说,重点研究实验室会首先选取它的纯英文过滤版作为数据集。
1.2. 书籍
故事型书籍由小说和非小说两大类组成,主要用于训练模型的故事讲述能力和反应能力,数据集包括 Project Gutenberg 和 Smashwords (Toronto BookCorpus/BookCorpus) 等。
1.3. 杂志期刊
预印本和已发表期刊中的论文为数据集提供了坚实而严谨的基础,因为学术写作通常来说更有条理、理性和细致。这类数据集包括 ArXiv 和美国国家卫生研究院等。
1.4. Reddit 链接
WebText 是一个大型数据集,它的数据是从社交媒体平台 Reddit 所有出站链接网络中爬取的,每个链接至少有三个赞,代表了流行内容的风向标,对输出优质链接和后续文本数据具有指导作用。
1.5. Common Crawl
Common Crawl 是 2008 年至今的一个网站抓取的大型数据集,数据包含原始网页、元数据和文本提取,它的文本来自不同语言、不同领域。重点研究实验室一般会首先选取它的纯英文过滤版(C4)作为数据集。
1.6. 其他数据集
不同于上述类别,这类数据集由 GitHub 等代码数据集、StackExchange 等对话论坛和视频字幕数据集组成。
2、常用数据集
2019 年以来,大多数基于 Transformer 的大型语言模型 (LLM) 都依赖于英文维基百科和 Common Crawl 的大型数据集。在本节中,我们参考了 Jesse Dodge 和 AllenAI(AI2)[8] 团队的综合分析,按类别对英文维基百科作了高级概述,并在 Common Crawl 数据集 [7] 的基础上,用谷歌 C4 [6] (Colossal Clean Crawled Corpus) 在 Common Crawl 中提供了顶级域(domains)。
2.1. 维基百科(英文版)分析
下面按类别 [9] 列出了维基百科的详细信息,涵盖了 2015 年抽样的 1001 篇随机文章,研究人员注意到随时间推移文章传播的稳定性。假设一个 11.4GB、经过清理和过滤的维基百科英文版有 30 亿 token,我们就可以确定类别大小和 token。
表 2. 英文维基百科数据集类别。公开的数据以粗体表示。确定的数据以斜体表示。
2.2 Common Crawl 分析
基于 AllenAI (AI2) 的 C4 论文,我们可以确定,过滤后的英文 C4 数据集的每个域的 token 数和总体百分比,该数据集为 305GB,其中 token 数为 1560 亿。
表 3. C4:前 23 个域(不包括维基百科)。公开的数据以粗体表示,确定的数据以斜体表示。
3、GPT-1 数据集
2018 年,OpenAI 发布了 1.17 亿参数的 GPT-1。在论文中,OpenAI 并没有公布模型训练数据集的来源和内容 [10],另外,论文误将‘BookCorpus’拼写成了‘BooksCorpus’。BookCorpus 以作家未出版的免费书籍为基础,这些书籍来自于 Smashwords,这是一个自称为 “世界上最大的独立电子书分销商” 的电子书网站。这个数据集也被称为 Toronto BookCorpus。经过几次重构之后,BookCorpus 数据集的最终大小确定为 4.6GB [11]。
2021 年,经过全面的回顾性分析,BookCorpus 数据集对按流派分组的书籍数量和各类书籍百分比进行了更正 [12]。数据集中有关书籍类型的更多详细信息如下:
表 4. BookCorpus 书籍类型。公开的数据以粗体表示,确定的数据以斜体表示。
在随后的数据集重构中,BookCorpus 数据集进一步过滤掉了书籍中的 “吸血鬼” 类别、降低了言情类书籍的百分比、增加了 “历史” 类书籍,增加了收集的书籍数量。
3.1. GPT-1 数据集总结
GPT-1 最终的数据集总结分析如下:
表 5.GPT-1 数据集总结。以 GB 为单位。公开的数据以粗体表示,确定的数据以斜体表示。
 4、GPT-2 数据集
2019 年,OpenAI 发布了拥有 15 亿参数的语言模型 GPT-2。GPT-2 论文阐明了所用训练数据集的大小 [13],不过并未说明其内容。而 GPT-2 模型卡(model card)(在 GPT-2 GitHub 仓库中)说明了模型内容 [14]。
我们可以从 GPT-3 论文中得到 token 数量,该论文使用了 WebText 扩展版本来表示 190 亿 token。据推测,2020 年推出的 WebText 扩展版本拥有 12 个月的额外数据(additional data),因此它可能比 2019 年推出的 GPT-2 版本大 25% 左右 [15]。GPT-2 最终的 token 数量确定为 150 亿左右。
如 GPT-2 论文所述,假设模型卡显示链接数时,每个链接都可以被 4500 万链接总数所除,那 WebText 的内容在数据集中所占的百分比的详细信息就可以确定。
然后可以使用确定的 150 亿 token 数量来查找每个域的 token 数量。请注意,在可用的前 1,000 个域中,此处仅显示前 50 个域。
表 6. WebText: 前 50 个域。 公开的数据以粗体表示,确定的数据以斜体表示。
4.1. GPT-2 数据集总结
GPT-2 模型最终的数据集总结分析如下:
表 7. GPT-2 数据集总结。 公开的数据以粗体表示,确定的数据以斜体表示。
5、GPT-3 数据集
GPT-3 模型由 OpenAI 于 2020 年发布。论文阐明了所用训练数据集的 token 数量 [16],但训练数据集的内容和大小尚不清楚(Common Crawl 的数据集大小除外 [17])
表 8. GPT-3 数据集。 公开的数据以粗体表示,确定的数据以斜体表示。
5.1. GPT-3:关于 Books1 和 Books2 数据集的分析
特别值得关注的是,在 OpenAI 的 GPT-3 论文中,并未公开 Books1 数据集(120 亿 token)和 Books2 数据集(550 亿 token)的大小和来源。关于这两个数据集的来源人们提出了几个假设,包括来自 LibGen18 和 Sci-Hub 的类似数据集,不过这两个数据集常以 TB 为计,大到无法匹配。
5.2. GPT-3:Books1
GPT-3 使用的 Books1 数据集不可能与 GPT-1 使用的 BookCorpus 数据集相同,原因在于 Books1 的数据集更大,达 120 亿 token。在一篇引用的论文 [19] 中就提及 GPT-1 使用的 BookCorpus 数据集拥有 9.848 亿个词,但这可能只相当于 13 亿 token(984.8 字 x 1.3 字的 token 乘数)。
通过标准化项目古腾堡语料库(SPGC),Books1 有可能与古腾堡项目保持一致性。SPGC 是一种开放式科学方法,被用于古腾堡项目完整的 PG 数据的精选(curated)版本。SPGC 包含 120 亿个 token [20],大约为 21GB [21]。
5.3. GPT-3:Books2
Books2(550 亿 token)可能与 Bibliotik 保持一致,并由 EleutherA 收集该来源的数据,组成数据集,使其成为 The Pile v1 的一部分。Bibliotik 版本为 100.96GB [22],其确定的 token 数仅为 250 亿,低于 Books2 公开的 550 亿。然而,使用 SPGC 的‘每字节 token 数’比率(大约为 1:1.75),Bibliotik 的 token 数和大小将更接近于 Books2。
5.4. GPT-3 数据集总结
附录 A 概述了使用 Wikipedia + CommonCrawl + WebText 数据集的顶级资源列表。GPT-3 模型的最终数据集总结分析如下:
表 9.GPT-3 数据集总结。公开的数据以粗体表示,确定的数据以斜体表示。
 6、The Pile v1(GPT-J 和 GPT-NeoX-20B)数据集
The Pile v1 数据集由 EleutherAI 于 2021 年发布,该数据集已被用于训练包括 GPT-J、GPT-NeoX-20B 在内的多种模型,并作为包括 MT-NLG 在内的其他模型的部分数据集。The Pile v1 论文阐明了所用训练数据集的来源和大小。随着 token 数量的增加,The Pile v1 论文应被用作未来数据集文档的黄金标准。
有关 token 数量的更多详情,可以使用本文提供的信息来确定,参见表 1(大小以 GB 为单位)和表 7(token / 每字节)[23]。
表 10. The Pile v1 数据集。公开的数据以粗体表示,确定的数据以斜体表示。
6.1. The Pile v1 分组数据集(Grouped Datasets)
为了确定如‘Books’、‘Journals’和‘CC’这类数据集的大小,笔者对数据集进行了分组,如下表所示。
表 11. The Pile v1 分组数据集(不包括 Wikipedia、CC 和 WebText)。公开的数据以粗体表示,确定的以斜体表示。
6.2. The Pile v1 数据集总结
The Pile v1 数据集与 GPT-J 和 GPT-NeoX-20B 模型的最终数据集总结分析如下:
表 12. Pile v1 数据集总结。 公开的数据以粗体表示,确定的数据以斜体表示。
7、Megatron-11B 和 RoBERTa 数据集
2019 年,Meta AI (当时称之为 Facebook AI) 和华盛顿大学联合发布了拥有 1.25 亿参数的 RoBERTa 模型。次年,Meta AI 发布了拥有 110 亿参数的 Megatron-11B 模型。Megatron-11B 使用的训练数据集与 RoBERTa 相同。RoBERTa [24] 论文阐明了所用训练数据集的内容,不过必须参考引用的论文 (BERT [25] 和 toryes [26]) 来确定最终的数据集大小。
BookCorpus : 确定的数据集为 4.6GB,如上面的 GPT-1 部分所示。
维基百科:公开的数据集为 “16GB(BookCorpus 加上英文维基百科)”。在减去 BookCorpus 数据集(4.6GB,如上面的 GPT-1 部分所述)后,维基百科数据集确定为 11.4GB。
CC-News :(经过滤后)公开的数据集为 76GB。
OpenWebText : 公开的数据集为 38GB。
Stories : 公开的数据集为 31GB。请注意,此数据集是 “基于常识推理任务问题” 的 Common Crawl 内容,不属于本文的‘Books’类别。相反,将 Stories 与 CC-News 数据集(76GB)相结合,Common Crawl 的总数据集则为 107GB。
7.1. Megatron-11B 和 RoBERTa 的数据集总结
Megatron-11B 和 RoBERTa 最终的数据集总结分析如下:
表 13. Megatron-11B 和 RoBERTa 的数据集总结。 公示的数据以粗体表示,确定的数据以斜体表示。
8、MT-NLG 数据集
2021 年,英伟达和微软发布了拥有 5300 亿参数的语言模型 MT-NLG。MT-NLG 是微软 Turing NLG(拥有 170 亿参数)和英伟达 Megatron-LM(拥有 83 亿参数)的 “继任者”。MT-NLG 论文阐明了所用训练数据集的来源和 token 数量,不过没有明确指出数据集的大小。
如前所述,有关数据集大小的更多详情,可以使用 The Pile v1 论文中提供的信息来确定。虽然使用的组件相同,但注意的是,MT-NLG 和 The Pile v1 中报告的组件大小却各不相同,这是由于来自 Eleuther AI (The Pile v1 数据集) 和 Microsoft/NVIDIA (MT-NLG 模型) 的研究人员采用了不同的数据过滤和去重方法。
8.1. MT-NLG 中的 Common Crawl 数据集
Pile-CC:公开的数据集为 498 亿 token,确定的数据为 227.12GB 左右,参见上述 Pile v1 部分。
CC-2020-50: 公开的数据集为 687 亿 token,假设 token 的每字节率(per byte rate)为 0.25 TpB=274.8GB。
CC-2021-04:公开的数据集为 826 亿 token,假设 token 的每字节率为 0.25 TpB=330.4GB
RealNews(来自 RoBERTa/Megatron-11B):显示为 219 亿 token。根据 RealNews 论文 [27],数据集确定为 120GB。
CC-Stories (来自 RoBERTa/Megatron-11B):公开的数据集为 53 亿 token,如上述 RoBERTa 部分所示,数据集确定为 31GB。
根据以上来源,可确认 Common Crawl 的总数据量为 983.32GB,共计 2283 亿 token。
8.2. MT-NLG 分组数据集(Grouped Datasets)
表 14. MT-NLG 分组数据集。公开的数据以粗体表示,确定的数据以斜体表示。
8.3. MT-NLG 数据集总结
MT-NLG 模型最终的数据集总结分析如下:
表 15. MT-NLG 数据集总结。 公示的数据以粗体表示,确定的数据以斜体表示。
9、MT-NLG 数据集 Gopher 数据集
Gopher 模型由 DeepMind 于 2021 年发布,有 2800 亿参数。该论文清楚地说明了所使用训练数据集所包含的高级 token 数量和大小 [28],但没有说明详细内容。
表 16. 公开的 Gopher 数据集 (MassiveText)。公开的数据以粗体表述,确定的数据以斜体表示。
有趣的是,据 Gopher 论文披露:其 Books 数据集中包含一些超过 500 年历史(1500-2008)的书籍。
9.1. MassiveWeb 数据集分析
DeepMind 于 2014 年被谷歌收购,并在创建 MassiveText 时获得了海量数据。虽然 Gopher 论文中没有进一步详细描述 MassiveWeb,但第 44 页附录中的表 A3b 注明了 MassiveWeb 中出现的前 20 个域 [29]。根据披露的每个域所占的百分比,我们可以使用 MassiveWeb 的总 token 数(5060 亿 token)和总原始大小(1900GB)来确定每个域的 token 数量和大小。
表 17. MassiveWeb:前 20 个域。公开的数据以粗体表示,确定的数据以斜体表示。
9.2. Gopher:关于维基百科数据集的分析
维基百科数据集的总规模很难确定。在 Gopher 论文中,研究人员指出维基百科没有进行数据去重 [30]。然而,论文中列出的不同大小数据集(12.5GB MassiveWeb Wikipedia 与 1GB MassiveText Wikipedia)可能是由于失误而造成的,误将 “10GB” 写成了 “1GB”。无论如何,本文仅使用 MassiveWeb 数据集版本 (12.5GB)。
9.3. Gopher: 不包括 WebText
Gopher 数据集的组成部分不包括 Reddit 外链的 WebText 数据集。为了清楚起见,尽管 Reddit 是 MassiveWeb 中的顶级域,但该数据集仅抓取 Reddit 域内的 Reddit 链接。根据定义,WebText [31] 由 “所有 Reddit 的外链” 组成(即指向 Reddit 域外的链接)。
9.4. Gopher 分组数据集
MassiveWeb 被认为是 MassiveText 的子组件,并被集成到 Gopher 的数据集汇总中,其分组基于以下列出的可用信息:
表 18. Gopher 分组数据集。公开的数据以粗体表示,确定的数据以斜体表示。
9.5. Gopher 数据集总结
Gopher 是本文中最大的数据集,大小为 10.5TB。Gopher 模型的最终数据集总结分析为:
表 19. Gopher 数据集总结。公开的数据以粗体表示,确定的数据以斜体表示。
10、结论
对于训练当代 Transformer 大型语言模型的数据集而言,这可能是最全面的整合分析内容(截止 2022 年初)。在主要数据源不透明的情况下,本次研究主要从二级和三级来源收集数据,并经常需要假定来确定最终估计值。随着研究人员要处理千万亿个 token(1,000 万亿)和数千 TB 的数据(1,000TB),确保详细披露数据集组成的文档变得越来越重要。
特别值得关注的是,基于大型语言模型的强大 AI 系统产生的冗长而匿名的输出正在迅速发展,其中许多数据集的细节内容几乎没有文档说明。
强烈建议研究人员使用突出显示的 “数据集的数据表(Datasheet for Datasets)” 论文中提供的模板,并在记录数据集时使用最佳实践论文(即 Pile v1 论文,包括 token 数量)。数据集大小(GB)、token 数量(B)、来源、分组和其他详细信息指标均应完整记录和发布。
随着语言模型不断发展并更广泛地渗透到人们的生活中,确保数据集的详细信息公开透明、所有人都可访问且易于理解是有用、紧迫和必要的。
扩展阅读及脚注
考虑到简洁和可读性,本文使用了脚注而非文本 / 括弧式引文。主要参考文献如下,或者参见 http://lifearchitect.ai/papers/,获取大语言模型领域的主要基础论文。以下论文按本文顺序显示。
  1. Datasheets for Datasets Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J., Wallach, H., Daumé III, H., & Crawford, K. (2018). Datasheets for Datasets.  https://arxiv.org/abs/1803.09010

  2. GPT-1 paper Radford, A., & Narasimhan, K. (2018). Improving Language Understanding by Generative Pre-Training. OpenAI.  https://cdn.openai.com/research-covers/language-unsupervised/language_understan  ding_paper.pdf

  3. GPT-2 paper Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. OpenAI.  https://cdn.openai.com/better-language-models/language_models_are_unsupervised  _multitask_learners.pdf

  4. GPT-3 paper Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., & Dhariwal, P. et al. (2020). OpenAI. Language Models are Few-Shot Learners.  https://arxiv.org/abs/2005.14165

  5. The Pile v1 paper Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., & Foster, C. et al. (2021). The Pile: An 800GB Dataset of Diverse Text for Language Modeling.

  6. EleutherAI.  https://arxiv.org/abs/2101.00027

  7. GPT-J announcement Komatsuzak, A., Wang, B. (2021). GPT-J-6B: 6B JAX-Based Transformer.  https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/

  8. GPT-NeoX-20B paper Black, S., Biderman, S., Hallahan, E. et al. (2022). EleutherAI. GPT-NeoX-20B: An Open-Source Autoregressive Language Model.  http://eaidata.bmk.sh/data/GPT_NeoX_20B.pdf

  9. RoBERTa paper Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., & Chen, D. et al. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. Meta AI.  https://arxiv.org/abs/1907.11692

  10. MT-NLG paper Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., & Casper, J. et al. (2021). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. Microsoft/NVIDIA.  https://arxiv.org/abs/2201.11990

  11. Gopher paper Rae, J., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., & Song, F. et al. (2021). Scaling Language Models: Methods, Analysis & Insights from Training Gopher. DeepMind.  https://arxiv.org/abs/2112.11446

  12. Appendix A: Top 50 Resources: Wikipedia + CC + WebText (i.e. GPT-3)

附录 A:前 50 个资源:Wikipedia + CC + WebText(即 GPT-3)


51份ChatGPT专业报告
计算机研究报告:ChatCPT在金融应用前景
ChatGPT系列,重构办公软件价值天花板
ChatGPT通用化效果突破、前景广阔
ChatGPT系列,为人形机器人注入“灵魂”
ChatGPT更懂人类的叙事
浙商证券:ChatGPT研究框架
ChatGPT芯片算力:研究框架
Chiplet方兴未艾,先进封测持续创新(2023)
ChatGPT将AIGC推向平民化时代(2023)
ChatGPT:AI相关生态赛道会分享
AIGC 概念爆火带来什么启示
ChatGPT成功连接,未来可期(2023)
大厂加大类ChatGPT布局力度,商业应用有望加速落地
ChatGPT带来算力需求;第三方支付行业逻辑逐步被认知
三分钟看懂ChatGPT
ChatGPT跨行业专题报告:AIGC发展大年,推动新一轮产业革命(2023)
ChatGPT的背后:指数级增长的芯片与半导体需求(2023)
专题研究:ChatGPT:深度拆解(2023)
专题报告:AIGC进展迅速,重构内容生产力(2023)
ChatGPT热度加速AI算力,光通信产业链受益
ChatGPT专题:探寻ChatGPT能力圈,以及破圈之路(2023)
AIGC专题:探析AIGC的技术发展和应用(2023)
AIGC/ChatGPT:内容生产力的革命(Web3.0)
ChatGPT的背后:指数级增长的芯片与半导体需求(2023)
国内外科技公司ChatGPT技术布局及应用场景
ChatGPT:又一个“人形机器人”主题(2023)
揭秘ChatGPT身后的AIGC技术和它的中国同行(2023)
ChatGPT 研究框架(2023)
ChatGPT:真格基金分享(2023)
揭秘ChatGPT身后的AIGC技术和它的中国同行(2023)
《ChatGPT专题报告(1)》
1、行业专题研究:ChatGPT,开启AI新纪元(2023)
2、从ChatGPT到生成式AI(Generative AI):人工智能新范式,重新定义生产力(2023)
3、海外ChatGPT专题:ChatGPT风口已至,商业化落地加速(2023)
4、ChatGPT:开启AI新纪元(2023)
5、ChatGPT引领,关注AI产业2023新场景落地
《ChatGPT专题报告(2)》
1、ChatGPT:优化对话的语言模型(2023)
2、ChatGPT:聊天机器人顶流,开启自然语言处理领域新篇章
3、ChatGPT前景广阔,巨头入局有望加速AI落地(2023)
4、ChatGPT:振奋人形机器人应用端锦绣前程
《AIGC人工智能行业专题》
1、AIGC行业专题:2023年有望成为AIGC的拐点 2、腾讯研究院AIGC发展趋势报告2023
GPT-1到ChatGPT产业梳理
ChatGPT需要何种算力基础设施?
ChatGPT全球商业化落地加速,新一轮算力储备开启
AIGC时代来临,全球 AI 服务器龙头厂商大有可为
《从“上网”到“上算”,由“网络世界至“虚拟现实”系列报告》
1、AI专题报告之一:AIGC 与ChatGPT 正掀起新一轮的产业浪潮 2、AI专题报告之二:AIGC将开启新一轮游戏产业变革 3、AI专题报告之三:新一轮内容爆发的AIGC逻辑,在于消除“认知”不对称
ChatGPT开启AI发展新浪潮,算力紧缺和海量应用驱动AI硬件广阔空间
ChatGPT对GPU算力的需求测算与相关分析
AIGC&ChatGPT发展报告


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。


电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。


获取方式:点击“小程序链接”即可查看182页 PPT可编辑版本和PDF阅读版本详情。

服务器基础知识全解PPT(终极版)

服务器基础知识全解PDF(终极版)



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 161浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 34浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 423浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 181浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 95浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 360浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦