基于车辆模式管理VMM的智能配电设计

原创 汽车电子与软件 2023-02-17 17:40

作者 | 窦明佳

出品 | 汽车电子与软件



一、什么是车辆模式管理VMM


车辆模式管理VMM(Vehicle Mode Management)简单理解就是根据车辆整个生命周期所处的不同状态以及用户对车辆使用的不同场景将车辆划分为不同的模式,总体包括车辆模式Car Mode以及用车模式Usage Mode。


1.1 车辆模式 Car Mode


该模式包括车辆从“出生”到报废的整个过程,其包括工厂模式(Factory Mode)、运输模式(Transport Mode)、正常模式(Normal Mode)、碰撞模式(Crash Mode)和检测模式(Dyno Mode):

a)  工厂模式(Factory Mode)

主要是处理来自车辆制造过程的需求,例如限制可能导致内部组件划伤或弄脏车辆的功能使用,例如,在车辆制造过程中是不需要信息娱乐功能及空调功能开启的,因此就可以在VMM Function Matrix中定义信息娱乐及空调相关功能在Factory Mode不可开启,同时IVI及空调软件在开发时遵循这样的要求,另外,如果在工厂模式需要测试车辆并驾驶车辆,需要短暂进入正常模式(Normal Mode),则可以通过特定的操作(比如按两次危险报警灯开关)暂停工厂模式,并将Car Mode 从Factory Mode切换到Normal Mode,车辆关闭后,再从Normal Mode切换到Factory Mode。

b)  运输模式(Transport Mode)

和工厂模式类似,根据车辆运输场景,取消使能部分功能,例如关闭车辆的迎宾功能、关闭蓝牙钥匙、关闭远程控制功能(T-BOX进入深度休眠状态)、禁止启动悬架调节功能等,从而避免车辆意外划伤和低压蓄电池亏电,导致车辆无法启动,特别是在海运耗时较长的场景;

c)  检测模式(Dyno Mode)

这是一种独特的模式,可以让测试车辆在测功机上正确、安全的运行,因为当车辆在测功机上试验时,自动制动和转向可能会导致危险情况的发生,因此可以通过诊断写入该模式,从而使车辆安全地运行。

d)  正常模式(Normal Mode)

车辆交付给客户时处于正常模式,Car Mode应在客户正常使用车辆的整个生命周期保持此模式,除非发生碰撞的情况,在Normal Mode时,车辆功能的可用性主要是基于Usage Mode(下面介绍),在工厂模式和运输模式时,可以短暂进入正常模式。

e)碰撞模式(Crash Mode)

在车辆监测到碰撞后,广播碰撞事件,同时车辆禁用某些功能,以提高车辆的安全性,车辆处于跛行状态,不能保证正常的功能。

图1:车辆模式Car Mode状态切换示例


1.2 用车模式Usage Mode

      

用车模式Usage Mode的主要目的是在对车辆功能的可用性方面提供一致的行为,VMM-Usage Mode可通过用户的操作检测用户的意图,并同时提供相应访问级别的功能:


a)  停放模式 Abandoned Mode


该模式是车辆进入锁车停放并进入休眠的模式,只允许少数的功能可用,例如报警、远程控制以及远程信息处理,当检测到驾驶员(迎宾)、远程请求(OTA)或远程控制功能(例如远程解锁、远程空调等)将使用车辆时,便从Abandoned Mode切换到Inactive Mode


b)  去激活模式 Inactive Mode


车辆可以处于Usage Mode-Inactive Mode的典型场景有:
  • 驾驶员进入车辆(车辆解锁、车门打开等);
  • 远程空调/远程启动/远程监控等;
  • 车辆充电;
  • 停车后用户按下SSB一键启动开关,Usage Mode将直接切换到Inactive Mode;


车辆处于Inactive Mode超过设定的时间(一般设置15min)后,Usage Mode将从Inactive切换到Abandoned Mode,因此即使用户忘记锁车也会让车辆进入休眠状态,从而保证车辆的最低静态电耗,防止蓄电池亏电而导致的用户无法启动车辆问题;


c)  便捷模式Convenience Mode


只能由Inactive Mode可切换到该模式,例如在车辆关闭时用户按下一键启动开关,车辆可由Usage Mode-Inactive Mode切换到Usage Mode-Convenience Mode,在该模式下可以激活的典型功能如电动车窗、电动座椅、雨刮、手机无线充电、播放音乐等,从而保证车辆在静止工况下用户对车辆的使用需求。


d)  激活模式 Active Mode


该模式更多的是用于拖车场景,其不应该被看作是一种正常的用户使用模式,在该模式下大多数功能是可用的(除了驱动系统),因此该模式整车的功耗是比较大的,同时该模式要通过用户有意识的操作才能进入(例如长按一键启动开关)。


e)  驾驶模式 Driving Mode


当检测到用户有启动车辆的意图时(例如用户踩下制动踏板并按下一键启动开关)进入该模式,进入该模式将激活必要的电源控制逻辑(例如闭合IG1继电器和启动继电器,并断开ACC、IG2继电器,在车辆启动后再断开启动继电器,闭合电源继电器(ACC继电器、IG1继电器、IG2继电器)等

图:2:用车模式Usage Mode状态切换示例



 二 、为什么要有车辆模式管理VMM


不管是燃油车,还是目前的纯电车、混动车以及氢能源车,其都必不可少会装配一款低压蓄电池(12V或24V),而这块低压蓄电池其主要作用有:
  • 为车辆休眠状态的静态电流消耗提供电量;
  • 当车辆运行过程中整车电器负载电流超过发电机(燃油车)或DC-DC(新能源车)的输出电流时,补充能量;
  • 为车辆的冷启动提供电量;
  • 作为一个蓄能器,吸收车辆运行过程中的电压波动(例如抛负载工况);


图3:整车低压蓄电池


当车辆在生产、运输、存放以及客户非启动工况使用车辆时,整车的电能都来自于这块小小的低压蓄电池,特别是在目前新能源车型上考虑空间、成本、重量以及无需启动发动机等因素,这块蓄电池的容量越来越小,因此通过车辆模式管理VMM管理车辆功能的可用性,从而在合适的时机提供合适的功能,并减少车辆的电能消耗,从而保证低压蓄电池有足够的电量来启动车辆,同时降低能耗带来的也是排放的降低(CO2等)和车辆使用成本的降低( 1watt= appr. 6 RMB)。



三、车辆模式VMM和电源模式Power Mode有什么关系


3.1 电源模式Power Mode


我们熟知的电源模式有KL15、KL30、KL31、KL50、KLR,大部分的主机厂在进行整车电源分配设计时会根据用电器的电源模式需求分配对应的模式电源:

  • KL30(BAT+):常电电源,该电源直接连接蓄电池正极,通常用于有唤醒需求ECU(例如PEPS、BCM、DCM、T-BOX等),有After Run需求的ECU(ESC等)以及永久存储需求的ECU;

  • KL15(IGN):ON档电源,该电源通常连接IGN继电器,由电源管理模块EEPM(Electrical Energy and Power Management)控制,通常和车辆启动、运行相关的用电器会挂接在电源模式下(如ECM、TCU等);
  • KL31(GND):蓄电池负极,目前市面上车辆低压电网都采用的单线制,蓄电池负极以及用电器负极直接连接车身等电位;
  • KL50(Crank):发动机点火状态;
  • KLR(ACC):该电源通常连接ACC继电器,下面挂一些车辆舒适、娱乐负载,例如座椅控制、车窗控制、多媒体控制等;


图4:整车电源模式Power Mode控制示例


注:上述电源模式的划分基于目前市面上大部分车型的情况举例,但这并不代表整车电源模式Power Mode就这几种,例如某法系品牌整车电源分配网络中有以下几种电源:+BAT、+BAT_CSP/Shunt park、+CPC、+CAN、+APC、+ACC;


3.2 VMM与Power Mode的关系


上述电源继电器(节电继电器、ACC继电器、IG1继电器、IG2继电器)的控制不完全依赖用车模式Usage Mode,但是用车模式Usage Mode对电源模式Power Mode具有重要的影响,例如:

  • 在Usage Mode=Inactive时,通常节电继电器处于闭合状态,此时顶灯、阅读灯、照脚灯、门灯、手套箱灯可以打开;

  • 在Usage Mode=Convenience时,通常ACC继电器、节电继电器处于闭合状态,车内的舒适、娱乐负载可以工作;
  • 在Usage Mode=Active时,通常节电继电器、ACC继电器、1GN1继电器处于闭合状态;
  • 在Usage Mode=Driving时,所有的电源模式继电器处于闭合状态;


但除上述正常情况下Usage Mode对电源模式的影响外,电源模式继电器也可以独立于车辆使用模式Usage Mode而单独控制,例如在Inactive模式时如果用户通过中控屏车辆设置-取消节电延时功能,则此时节电继电器可不闭合。


四、基于VMM的智能配电设计


 4.1 传统基于电源模式Power Mode的配电设计弊端


如上3.1中所示基于车辆模式VMM的电源模式Power Mode设计,其可以划分的电源模式是有限的,从而使整车电源分配网络设计时存在多个用电器共用一个继电器控制供电的情况,这种基于电源模式使能用电器的设计存在某些场景下用户无该功能需求,而该功能对应的控制器一直处于Active模式,造成整车低压功耗大的问题,例如在行车工况,电源模式为IGN,此时用户无使用空调的需求,而热泵控制器则一直处于供电状态,控制器自身处于激活模式的功耗是较大的,当整车所有的控制器在没有使用需求时一直处于Active模式累加后的整车低压功耗会直接影响车辆最终的油耗、续驶里程。


图5:传统基于电源模式继电器的配电示例


4.2 基于车辆模式VMM的智能配电


在目前区域架构中区域控制器ZCU取代了传统的中央电气盒,采用分布式区域智能配电,将以前的保险丝、继电器替换为eFuse、HSD、MOSFET等,不仅可以实现短路、断路、过流、过压等故障诊断、故障保护及自恢复等优势,同时,因为每个用电器由独立的电源芯片控制,可以根据用户使用模式实现更灵活的供电控制(Power-on or Power-down Power supply channel based on use case definition),


图6:区域架构智能配电示例


图7:Efuse的保护功能


4.2.1 编制 VMM Matrix


VMM Matrix的主要作用是规定在不同车辆模式下功能的可用状态,及约束了某一车辆模式下功能是否可以开启和车辆模式切换时功能是否需要去使能等内容。


表1:VMM Matrix示例


4.2.2  依据功能查询设备ID


依据VMM Matrix中车辆模式与功能的映射,位于中央计算单元CCU的各应用软件模块需接收当前车辆模式信息-VehicleModeSts,判断在该模式功能是否可以开启并同时接收所有的输入条件在判断功能可开启后首先需要查询支持自身功能实现需要的那些硬件设备工作,并把相应的设备ID告诉电源管理模块EEPM,电源管理模块EEPM查询设备与功率芯片的映射表(如表2),并将需开启设备对应的MOSFET ID通过以太网输入给区域控制器ZCU,区域控制器ZCU打开对应的MOSFET,使设备供电。例如如下车辆模式管理模块VMM、车窗控制模块WCM、电源管理模块EEPM都是位于CCU的应用层软件。



图8:左前车窗控制供电时序图


DeviceID

设备

简称

所属区域控制器

功率芯片 ID

0x01

电动助力转向

EPS

前舱区域控制器

0x0101

0x02

智能集成制动单元

IPB

前舱区域控制器

0x0101

0x03

左前门模块

DCU-L

座舱左区域控制器

0x0102

0x04

右前门模块

DCU-R

座舱右区域控制器

0x0103

0x05

前置雷达

LRR

前舱区域控制器

0x0104

表二:设备ID和功率芯片ID映射表

通过上述技术方案可实现每个设备的电源根据车辆使用模式单独控制,在有功能需求的情况下对应打开和该功能相关的设备电源,从而避免设备在无使用需求是长期处于Active模式或Standby 模式,从而降低能源消耗。



五、结语


上面介绍了一种区域架构下电源控制的方法,通过电子熔断丝代替传统的保险、继电器可基于用户对车辆的功能需求实现更加灵活的电源配电,更加精细化的电源管理策略,但是过程也会存在很多问题需要克服,例如:

1.  区域控制器承担智能配电,用eFuse的成本相对于前期传统的Fuse Relay会有大的提升,特别对于输出电流大于30A的大功率芯片成本更高;

2.  目前区域控制器下的Sensor&Actuator ECU在电源接口设计上还是传统的Bat+IGN的方式,ECU的唤醒还需要电源状态IGN,如果将其接在区域控制器下通过Efuse供电的话,需要同时将BAT和IG同时接Efuse输出引脚,导线设计是一个问题;

3.  整车所有功能都要听从VMM的指挥,需要OEM对各个供应商的功能开发有较强的把控;


目前区域架构的智能配电刚刚兴起,问题肯定会存在,但都不是克服不了的,需要同仁一起努力。



参考文章:

1、公众号:新能源汽车电子电气架构-《车辆模式管理开发》

2、东芝半导体 Efuse IC



end


添加下方微信加入汽车技术专业交流群

(仅限专业人士)

添加备注姓名+公司+领域




汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 50浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 125浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 89浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 43浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 206浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 325浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 156浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 197浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 153浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 84浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 33浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 119浏览
  • 在物联网(IoT)短距无线通信生态系统中,低功耗蓝牙(BLE)数据透传是一种无需任何网络或基础设施即可完成双向通信的技术。其主要通过简单操作串口的方式进行无线数据传输,最高能满足2Mbps的数据传输速率,可轻松实现设备之间的快速数据同步和实时交互,例如传输传感器数据、低采样率音频/图像与控制指令等。低功耗蓝牙(BLE)数据透传解决方案组网图具体而言,BLE透传技术是一种采用蓝牙通信协议在设备之间实现数据透明传输的技术,设备在通信时会互相验证身份和安全密钥,具有较高的安全性。在不对MCU传输数据进
    华普微HOPERF 2025-01-21 14:20 34浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 47浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦