虹科干货|Linux终端设备的时间敏感网络协议实现(2)

原创 工业通讯 2023-02-16 17:31

前文回顾

虹科干货 | Linux终端设备的时间敏感网络协议实现(1)

在上一篇文章中,我们介绍了TSN技术不断发展的背景,及其技术层面和实际应用层面的挑战,并介绍了IEEE 802.1ASrev和IEEE 802.1Qbv这两个基本标准。下面,我们将沿着这一方向探讨如何在Linux终端设备中实现TSN时间敏感网络协议。

Part 3

TSN实施的背景

TSN实施已在不同部门和应用中被广泛提出和分析。一些研究指出,确定性延迟是通过时间同步和全局调度的应用实现的,分别对应于 IEEE 802.1AS 和 802.1Qbv TSN 标准。因此,原则上可以使用这两个标准更确定地安排关键流量。但如果延迟和抖动的要求非常低,IEEE 802.1Qbv调度必须与时钟同步机制相结合,而将IEEE 802.1ASrev时钟同步于IEEE 802.1Qbv标准包括在内非常具有挑战性,比如在包含许多流的网络中决定如何调度它们是一件复杂的事情。

另一个重大挑战是将最初不支持TSN的设备集成到TSN网络中。例如,大多数分析的实现都是基于Linux操作系统的,而Linux也有实时性能的不确定性来源,例如抢占或中断,但它包括许多机制来实现更好的可靠性。

Part 4

TSN实施的方案

正如前文所述,同步带来了许多挑战。而当我们寻求使用Slot并调整线路中的流量时,这些挑战就会增加。为了,我们推出了应对这些挑战的解决方案。该方案基于一款可用于TSN协议的PCIe网卡——RELY-TSN-PCIe。该网卡基于现场可编程门阵列 (FPGA) 和英特尔i210 芯片,其中英特尔i210芯片支持TSN,而FPGA提供多路径(嵌入式以太网交换机)和实时功能。这种组合允许在PC中使用标准驱动程序,这在操作系统缺乏TSN支持时至关重要。同时,它还允许Intel芯片不支持的高级调度。RELY-TSN-PCIe卡是第一个已知的TSN解决方案,它允许部署从用户终端设备及其将要使用的应用中抽象出来的确定性以太网网络。换句话说,它可以用于不同的终端设备(监控和数据采集(SCADA)、物联网网关),从而在设备中引入TSN技术并将其集成到确定性网络中。

从操作系统的角度来看,插入是透明的,因为它只检测标准以太网卡。如果OS想要使用高级调度,这个方案就变得不那么透明了,但是TSN网络操作不需要这样的改变。该解决方案是在 Ubuntu 20.04 LTS 中开发的。

1

IEEE 802.1ASrev实施

为实现时间敏感应用的802.1ASrev 定时和同步标准,首先确定必须参与该标准的网络时钟。图3显示了已识别的时钟和同步链路。从图中可以看出,可以区分为六个不同的时钟。

图3 需要同步的网络时钟

有必要区分同步所有时钟的方式。同步有两种:
  • 网络同步
  • 设备-网络同步

网络同步是基于同步I210和PCIe的四个PTP硬件时钟(PHC);为此,将使用linuxptp包中包含的ptp4l命令。linuxptp是Linux的PTP实现。ptp4l实现边界时钟(BC)和普通时钟(OC)。另一方面,作为软件的系统时钟使用NTP或GPS从Internet获取时间以实现设备网络同步。尽管如此,在这种情况下,系统时钟将通过linuxptp包中包含的phc2sys命令从TSN网络获取时间,而不是直接使用硬件时间戳的gPTP。

2

IEEE 802.1Qbv实施

有两种选择可以构建一个端到端实现Qbv的网络。第一种是仅在充当talker的Linux端点的输出上激活Qbv。这样,数据包将有序地离开Linux内核,理论上在整个网络中无序传播,直到到达侦听器。但是,这不是最好的方法。从内核输出到线路,有几层注入抖动。这种抖动可能导致不符合分配的时隙。

第二种选择是在两点激活Qbv:在Linux talker的内核中,和在连接到talker的以太网卡的输出端口中,如图4所示。第二种方法是一直使用的方法。在两点配置相同的Qbv。以这种方式,数据包跟随线路上分配的时隙。当所有网络元素也都具有TSN感知能力时,这些时隙将一直保留到接收方。

图4 Qbv网络结构

已创建内核补丁以向Linux机器提供Qbv功能。在下文中,我们将解释数据包转发在Linux机器上的工作原理、为处理时隙而创建的两个补丁,以及它们在最终Linux机器上的实现。

Linux系统上的流量转发是通过内核的流量控制(TC)子系统完成的。TC子系统代码在知识产权(IP)和将数据传输到网络的网络接口驱动程序之间运行。该子系统负责不断提供要发送给驱动程序的数据包。

TC由队列规则(qdisc)组成。qdiscs表示应用于队列的调度策略。它根据该调度程序中安装的规则重新组织到达队列的数据包,并以新的顺序发送它们。默认情况下,此调度程序维护一个先进先出(FIFO)队列。因此,需要一种能够按照802.1Qbv标准,按照时间间隔重组数据包,有序发送流量的qdisc。

vanilla Linux内核没有这种排队规则,因此开发了内核补丁,引入了在Linux系统上实施802.1Qbv的必要工具。这些补丁引入了两个新的qdisc:


Earliest TxTime First Qdisc (ETF) 允许应用程序控制将数据包发送到网卡驱动程序的确切时间。ETF通过缓冲数据包直到传输时间之前的可配置时间来实现这一点。


时间感知优先级整形器(TAPRIO)实现了IEEE802.1Qbv标准定义的状态机的简化版本(请参阅IEEE802.1Qbv标准),允许配置一系列网关状态,其中每个状态允许或禁止流量出口对于流量类别的子集。

这些补丁还为系统套接字引入了一个名为SO_TXTIME的新选项,以启用套接字进行基于时间的传输,从而配置其参数。

Part 5

结果

我们已经创建了一个高级应用程序来以图形方式配置这两个标准。它使网络管理员能够配置和观察网络提供的插槽信息,类似于图5中所示的Wireshark的I/0图表,但是是实时的。概念证明是在一个专门设置的网络中开发的,该网络由通过单个交换机组成的TSN感知网络连接的两台PC(talker和listener)组成。

图5 Wireshark捕获演示插槽

第一步是检查所有不同系统之间的同步。检查PCIe板的每秒脉冲输出和PTP守护程序提供的信息,以太网卡在10ns内同步,而系统在100ns范围内(参见图6)。

图6 完全同步的系统

卡的内部交换机之间、内部交换机与i210芯片之间、芯片与PC之间都建立了gPTP关系。

已创建演示以测试补丁在端点上的操作。该演示在talker中配置Qbv补丁以发送ST和尽力而为流量。Listener接收此数据并以图形方式实时显示每个数据如何到达其插槽。由此产生的流量可以在图7中看到,由开发的应用程序的实时窗口显示。这些演示展示了标准的正确操作及其与PCIe卡的集成。结果是有序和整形的流量。

图7 创建的应用程序演示槽的实时捕获

这种实时视图允许网络设计人员跟踪网络的运行并将不同的配置调整到所需的要求。

其结果与Wireshark提供的结果相似,但在这种情况下是实时获得的。该应用程序允许对链接进行轻松管理。同时,它们有助于证明支持TSN的系统的正确操作。

使用此配置框架,设计人员可以创建具有不同配置的网络并查看其结果。图8中展示了一个更复杂的例子。在此示例中,TSN中的每种流量类型都基于虚拟局域网 (VLAN) 标签的优先级代码点(PCP) 位。在此设置中,流量分类如下:
  • ST: 制动信息(数据分发服务(DDS)流1、VLAN11、PCP2)
  • RT: 摄像机实时视频(DDS流2、VLAN12、PCP5)
  • BE: 剩余的TCP/IP流量(VLAN3,PCP6)

TSN配置分布在四个时隙中,完成 10毫秒的周期时间。每个时隙的流量分配如下:(1) Free. (2) ST. (3) Free. (4) RT+BE. 可以看出,不同的流被限制在配置的slot中。

图8 车载网络的真实示例 

ST由刹车信息组成。RT提供实时视频,而BE由其余信息娱乐数据组成。

Part 6

结论

本文所述工作的主要成果是构建了一个支持TSN的系统,该系统可用于提供可靠且可扩展的网络。因此,可以在Linux终端设备中实施两个主要的TSN标准并验证RELY-TSN-PCIe卡的正确操作。终端设备已包含在TSN网络中。一方面,所有网络时钟都已通过在终端设备中使用开源守护程序实施IEEE 802.1ASrev标准来同步。另一方面,我们使用公共Linux内核补丁按照IEEE 802.1Qbv标准在时隙中实现了数据包的有序发送。此外,我们还创建了一个配置和可视化工具,可帮助网络设计人员设置和了解系统的操作。由于这项工作和所使用的两种开放技术,在标准设备(即非专有设备)中实施TSN方面正在取得进展。

END

本文由虹科技术工程师翻译整理。
文章出处:
https://www.mdpi.com/2227-7080/10/3/55


本文中使用的RELY-TSN-PCIe板卡是由虹科合作伙伴RELYUM推出的一款智能NIC卡,它可以插入任何windows和linux电脑,且不需要在主机上安装任何特殊软件,快速引入TSN技术。它能够在TSN网络中使用典型的工业应用和软件,如SCADA、MES、OPC(UA)、MTConnect等。此外,RELY-TSN-PCIe 支持使用标准中定义的 YANG 模型进行自动配置。但是,为了便于早期试用,该板卡允许手动 TSN 配置

虹科进入TSN技术领域多年并已有丰富的技术积累,并面向国内客户推出了TSN的IP核、网卡、交换机、流量记录仪、测试工具、配置软件等多款软硬件产品,能够帮助用户快速加入TSN流量,享受新兴技术发展带来的好处。欢迎联系虹科了解更多信息!

点击阅读原文,获取更多TSN资料!

评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 93浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 156浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 124浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 89浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦