如何使用Delve和eBPF更快地调试Go程序

Linux阅码场 2023-02-16 08:00

前言

此文章将解释如何使用 Delve[1] 跟踪 Go 程序,以及 Delve 如何利用 eBPF 在后台优化效率和速度。Delve 的目标是为开发人员提供愉快且高效的 Go 调试体验。因此,本文重点介绍了我们如何优化函数跟踪子系统,以便您可以更快地检查程序并找到根本原因分析。Delve 的跟踪实现有两个不同的后端,一个是基于 ptrace 的,另一个使用 eBPF。如果您不熟悉任何这些术语,请不要担心,我会随着解释一起说明。

什么是程序跟踪?

跟踪是一种允许开发人员在执行时看到程序正在做什么的技术。与典型的调试技术相反,这种方法不需要直接用户交互。最知名的跟踪工具之一是 strace[2],它允许开发人员在执行期间查看程序的系统调用。

尽管上述的 strace 工具对于了解系统调用很有用,但 Delve trace 命令允许您洞察 "用户空间" 中 Go 程序的情况。这种 Delve 跟踪技术允许您跟踪程序中的任意函数,以便查看这些函数的输入和输出。

此外,您还可以使用此工具了解程序的控制流,而无需交互式调试会话的开销,因为它还会显示正在执行该函数的 Goroutine。对于高度并发的程序,这可能是获得程序执行洞察力的更快方法,而无需启动完整的交互式调试会话。

如何使用 Delve 跟踪 Go 程序

Delve 允许您通过调用 dlv trace 子命令来跟踪 Go 程序。该子命令接受一个正则表达式,并将执行您的程序,在与正则表达式匹配的每个函数上设置跟踪点,并实时显示结果。

以下是示例程序:

package main


import "fmt"

func foo(x, y int) (z int) {
        fmt.Printf("x=%d, y=%d, z=%d\n", x, y, z)
        z = x + y

        return
}

func main() {
        x := 99
        y := x * x
        z := foo(x, y)

        fmt.Printf("z=%d\n", z)
}

程序跟踪将给出以下输出:

$ dlv trace foo

>
 goroutine(1): main.foo(99, 9801)

x=99, y=9801, z=0

>
> goroutine(1): => (9900)

z=9900

Process 583475 has exited with status 0

如您所见,我们在正则表达式中提供了 foo,它在这种情况下与主包中同名的函数匹配。以>为前缀的输出表示被调用的函数,并显示调用函数的参数,而以>>为前缀的输出表示从函数返回并与其相关联的返回值。所有输入和输出行均以在该时刻执行的 Goroutine 作为前缀。

默认情况下,dlv trace 命令使用基于 ptrace 的后端,但添加 --ebpf 标志将启用基于 eBPF 的实验性后端。使用上面的示例,如果我们要像以下方式调用 trace 子命令:

$ dlv trace –ebpf foo

我们将收到类似的输出。但是,背后发生的情况要大大不同并且更加高效。

ptrace低效率

默认情况下,Delve 会使用 ptrace 系统调用来实现跟踪功能。ptrace 是一个系统调用,允许程序观察和操纵同一台机器上的其他程序。实际上,在 Unix 系统上,Delve 使用这个 ptrace 功能来实现调试器提供的许多低级功能,例如读写内存、控制执行等。

虽然 ptrace 是一个有用和强大的机制,但它存在固有的效率低下。首先,ptrace 是一个系统调用,意味着我们必须跨越用户空间/内核空间边界,这增加了每次使用函数时的开销。这是由于我们必须调用 ptrace 的次数越多,开销就越大。考虑前面的示例,以下是使用 ptrace 实现跟踪的大致步骤概述:

  1. 使用 ptrace(PT_ATTACH) 启动程序并附加调试器。
  2. 使用 ptrace 在匹配所提供的正则表达式的每个函数处设置断点,并在被跟踪的进程的可执行内存中插入断点指令。
  3. 另外,在该函数的每个返回指令处设置断点。
  4. 再次使用 ptrace(PT_CONT) 继续程序。
  5. 此步骤可能涉及多次ptrace调用,因为我们需要读取函数入口的CPU寄存器、堆栈上的内存以及如果必须取消指针引用的堆上的内存。
  6. 再次使用ptrace(PT_CONT)继续程序。
  7. 在函数返回时遇到断点,通过读取变量,可能涉及到更多的ptrace调用,以读取寄存器和内存。
  8. 再次使用ptrace(PT_CONT)继续程序。
  9. 直到程序结束。

显然,函数的参数和返回值越多,每次停止就越昂贵。所有调试器花费在进行 ptrace 系统调用的时间,我们跟踪的程序都处于暂停状态,没有执行任何指令。从用户的角度来看,这使得程序的运行速度比原本要慢得多。现在,对于开发和调试来说,这也许不是什么大问题,但是时间是宝贵的,我们应该尽量快速地完成事情。程序在跟踪过程中的运行速度越快,你就能越快找到问题的根本原因。

现在的问题是,我们如何使其更好呢?在下一节中,我们将讨论新的基于 eBPF 的后端,以及它如何改进这种方法。

eBPF 为何比 ptrace 更快

一个最大的速度和效率改进是避免大量的系统调用开销。这是 eBPF 发挥作用的地方,因为我们可以在函数入口和出口设置 uprobes,并将小 eBPF 程序附加到它们上。Delve 使用 Cilium eBPF Go 库加载和与 eBPF 程序交互。

每次触发 probe 时,内核将调用我们的 eBPF 程序,然后在它完成后继续主程序。我们编写的小 eBPF 程序将处理函数入口和出口中列出的所有步骤,但不会有所有的系统调用上下文切换,因为程序直接在内核空间中执行。我们的 eBPF 程序可以通过 eBPF 环形缓冲区和映射数据结构与用户空间中的调试器通信,使 Delve 能够收集所需的所有信息。

这种方法的优点是,我们正在跟踪的程序需要暂停的时间大大减少。在触发 probe 时运行我们的 eBPF 程序比在函数入口和出口处调用多个系统调用要快得多。

使用eBPF调试与跟踪步骤

这里再概括一遍使用 eBPF 跟踪调试的流程:

  1. 启动程序并使用 ptrace(PT_ATTACH) 附加到进程上。
  2. 在内核中加载所有需要跟踪的函数的 uprobes。
  3. 使用 ptrace(PT_CONT) 继续执行程序。
  4. 在函数入口和出口触发 uprobes。每当 probe 被触发,内核部分将运行我们的 eBPF 程序,该程序获取函数的参数或返回值,并将其发送回用户空间。在用户空间中,从 eBPF 环形缓冲区读取函数参数和返回值。
  5. 重复此过程直到程序结束。

通过使用这种方法,Delve 可以比使用默认的 ptrace 实现更快地跟踪程序。现在,你可能会问,为什么不将这种方法默认使用?事实上,未来很有可能会成为默认方法。但目前,仍在进行开发,以改进这种基于 eBPF 的后端并确保它与基于 ptrace 的后端具有平衡性。然而,您仍然可以在执行 dlv trace 时使用 --ebpf 标志来使用它。

为了给出一个使用不同跟踪方法的程序的效率差异的大致数字,我测量了另一个程序的运行情况,如下所示:

Program execution: 23.7µs

With eBPF trace: 683.1µs

With ptrace tracing: 2.3s

数字本身就是最好的证明!

为什么不使用uretprobe

如果您熟悉 eBPF、uprobes / uretprobes,您可能会问为什么我们对一切都使用 uprobes,而不是仅使用 uretprobes 捕获返回参数。关于此的解释相当复杂,但简短版本是,Go 运行时在执行 Go 程序过程中需要多次检查调用堆栈。当 uretprobes 附加到函数时,它们将该函数的返回地址覆盖在堆栈上。当 Go 运行时检查堆栈时,它会找到该函数的意外返回地址,最终会导致程序致命退出。为了解决这个问题,我们只需使用 uprobes,并利用 Delve 的能力检查程序的机器指令来在每个函数的返回指令处设置探测器。

Delve使用eBPF更快地调试Go代码

Delve的总体目标是帮助开发人员尽快地找到Go代码中的错误。为此,我们利用最新的方法和技术,并试图推动调试器可以完成的范围。Delve在内部利用eBPF来最大化效率和速度。用户空间跟踪是任何工程师工具箱中的重要工具,我们的目标是使其高效易用。

原文:

How debugging Go programs with Delve and eBPF is faster[3]

参考资料

[1]

Delve: https://github.com/go-delve/delve

[2]

strace: https://strace.io/

[3]

How debugging Go programs with Delve and eBPF is faster: https://developers.redhat.com/articles/2023/02/13/how-debugging-go-programs-delve-and-ebpf-faster


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦