Go设计模式实战--用状态模式实现系统工作流和状态机

小白debug 2023-02-15 08:00

大家好,这里是每周都在陪你进步的网管~!本节我们讲一个行为型的设计模式--状态模式,并通过Golang示例进行实战演示。

状态模式(State Pattern)也叫作状态机模式(State Machine Pattern)状态模式允许对象的内部状态发生改变时,改变它的行为,就好像对象看起来修改了它实例化的类,状态模式是一种对象行为型模式。

状态模式用于解决系统中复杂对象的状态转换以及不同状态下行为的封装问题。当系统中某个对象存在多个状态,这些状态之间可以进行转换,而且对象在不同状态下行为不相同时可以使用状态模式,把特定于状态的代码抽象到一组独立的状态类中避免过多的状态条件判断,减少维护成本。

状态模式的结构十分简单清晰主要包含三种角色,我们一起来看下。

状态模式的构成

状态模式的结构如下面的UML类图所示

状态模式 -- UML类图

主要由环境类角色、抽象状态角色和具体状态角色,三个角色构成。

  • Context(环境类):环境类又称为上下文类,它定义客户端需要的接口,内部维护一个当前状态实例,并负责具体状态的切换。
  • State(抽象状态):定义状态下的行为,可以有一个或多个行为。
  • ConcreteState(具体状态):每一个具体状态类对应环境的一个具体状态,不同的具体状态类其行为有所不同。

状态模式实战

下面举个现实生活中可以用到状态模式的例子,想使用状态模式首先我们得先确定这个业务实体在不同的状态下得拥有不同的行为。

日常生活中常见的拥有状态机的业务实体比如:OA系统的考勤请假审批,每个环节中审批的状态不一样时允许进行的操作也不一样。再比如,大街上的红绿灯,红黄绿不同状态下拍到路上行驶的汽车和检测到车的行驶速度时也会有不同的行为。

下面用 Golang 实现状态模式来解构红绿灯在不同灯的状态下所具有的行为。

首先针对交通红绿灯,每种灯状态下都有亮灯、变灯、测速的行为,所以我们首先定义出交通灯的状态接口。

"本文使用的完整可运行源码
去公众号「网管叨bi叨」发送【设计模式】即可领取"

// State interface
type LightState interface {
 // 亮起当前状态的交通灯
 Light()
 // 转换到新状态的时候,调用的方法
 EnterState()
 // 设置一个状态要转变的状态
 NextLight(light *TrafficLight)
 // 检测车速
 CarPassingSpeed(*TrafficLight, intstring)
}

然后我们定义环境类 Context,它提供客户端调用状态行为的接口。

// Context
type TrafficLight struct {
 State LightState
 SpeedLimit int
}

func NewSimpleTrafficLight(speedLimit int) *TrafficLight {
 return &TrafficLight{
  SpeedLimit: speedLimit,
  State: NewRedState(),
 }
}

接下来我们在实现具体状态前,先定义一个DefaultLightState类型用于让具体的LightState 嵌套组合,减少公用法在每个具体 LightState 实现类中的重复实现。

"本文使用的完整可运行源码
去公众号「网管叨bi叨」发送【设计模式】即可领取"

type DefaultLightState struct {
 StateName string
}

func (state *DefaultLightState) CarPassingSpeed(road *TrafficLight, speed int, licensePlate string) {
 if speed > road.SpeedLimit {
  fmt.Printf("Car with license %s was speeding\n", licensePlate)
 }
}

func (state *DefaultLightState) EnterState(){
 fmt.Println("changed state to:", state.StateName)
}

func (tl *TrafficLight) TransitionState(newState LightState) {
 tl.State = newState
 tl.State.EnterState()
}

这个技巧我们也在模版和策略模式使用过,诀窍是它只实现LightState里的通用方法的默认版,不能实现所有的方法,那样的话他也就算一个 LightState 具体实现了,而这不是我们想要的,我们想要的是把接口中每个类型实现逻辑不同的关键方法以及覆盖默认版的通用方法的工作,留给具体类型去实现。

接下来我们定义三个具体状态类型,去实现LightState接口,首先是红灯的状态实现。

// 红灯状态
type redState struct {
 DefaultLightState
}

func NewRedState() *redState {
 state := &redState{}
 state.StateName = "RED"
 return state
}

func (state *redState) Light() {
 fmt.Println("红灯亮起,不可行驶")
}

func (state *redState) CarPassingSpeed(light *TrafficLight, speed int, licensePlate string) {
 // 红灯时不能行驶, 所以这里要重写覆盖 DefaultLightState 里定义的这个方法
 if speed > 0 {
  fmt.Printf("Car with license \"%s\" ran a red light!\n", licensePlate)
 }
}

func (state *redState) NextLight(light *TrafficLight){
 light.TransitionState(NewGreenState())
}

红灯的时候不能行使,所以这里要重写覆盖DefaultLightState 里定义的CarPassingSpeed方法。

接下来是绿灯和黄灯状态:

"本文使用的完整可运行源码
去公众号「网管叨bi叨」发送【设计模式】即可领取"

// 绿灯状态
type greenState struct{
 DefaultLightState
}

func NewGreenState() *greenState{
 state :=  &greenState{}
 state.StateName = "GREEN"
 return state
}

func (state *greenState) Light(){
 fmt.Println("绿灯亮起,请行驶")
}

func (state *greenState) NextLight(light *TrafficLight){
 light.TransitionState(NewAmberState())
}

// 黄灯状态
type amberState struct {
 DefaultLightState
}

func NewAmberState() *amberState{
 state :=  &amberState{}
 state.StateName = "AMBER"
 return state
}

func (state *amberState) Light(){
 fmt.Println("黄灯亮起,请注意")
}

func (state *amberState) NextLight(light *TrafficLight){
 light.TransitionState(NewRedState())
}

通过上面的代码我们可以看到状态实现类在内部确定了状态可以转换的下个状态,这样就把系统流程的状态机留在了内部,避免让客户端代码再去做状态链初始化和转换的判断,符合高内聚的设计原则,从而解放了客户端。

func main() {
 trafficLight := NewSimpleTrafficLight(500)

 interval := time.NewTicker(5 * time.Second)
 for {
  select {
   case <- interval.C:
    trafficLight.State.Light()
    trafficLight.State.CarPassingSpeed(trafficLight, 25"CN1024")
    trafficLight.State.NextLight(trafficLight)
  default:
  }
 }
}

程序编辑后执行,在终端能看到几个灯的状态会循环切换

运行结果

本文的完整源码,已经同步收录到我整理的电子教程里啦,可向我的公众号「网管叨bi叨」发送关键字【设计模式】领取。

公众号「网管叨bi叨」发送关键字【设计模式】领取。

总结

最后我们从适用场景、模式应用和缺点三个方面对状态模式做个总结。

适用场景

  • 如果对象需要根据自身当前状态进行不同行为, 同时状态的数量非常多且与状态相关的代码会频繁变更的话, 可使用状态模式。
    • 模式将所有特定于状态的代码抽取到一组独立的类中。这样一来, 可以在独立于其他状态的情况下添加新状态或修改已有状态, 从而减少维护成本。
  • 如果某个类需要根据成员变量的当前值改变自身行为, 从而需要使用大量的条件语句时, 可使用该模式。
    • 状态模式会将这些条件语句的分支抽取到相应状态类的方法中。通过业务逻辑内聚,减少客户端类的这部分工作。
  • 当相似状态和基于条件的状态机转换中存在许多重复代码时, 可使用状态模式。
    • 状态模式让你能够生成状态类层次结构, 通过将公用代码抽取到抽象基类中来减少重复。

模式应用

状态模式在工作流或游戏等类型的软件中广泛使用,如在OA办公系统中,一个审批的状态有多种,而且审批状态不同时对批文的操作也有所差异。使用状态模式特别适合用于描述工作流对象(如批文)的状态转换以及不同状态下它所具有的行为。

说了这么多状态模式的优点,我们最后我们再来说说它的缺点,让我们在实际应用和做系统设计时能更好地做抉择。

缺点

  • 状态模式的使用必然会增加系统中类和对象的个数,导致系统运行开销增大。
  • 状态模式的结构与实现都较为复杂,如果使用不当将导致程序结构和代码的混乱,增加系统设计的难度。
  • 状态模式对“开闭原则”的支持并不太好,增加新的状态类需要修改那些负责状态转换的源代码,否则无法转换到新增状态;而且修改某个状态类的行为也需修改对应类的源代码。

参考链接

  • https://medium.com/swlh/how-the-state-pattern-will-improve-your-go-programs-e9babeed6e41
  • https://github.com/Cyberlurk/trafficlight
- END -


扫码关注公众号「网管叨bi叨」

给网管个星标,第一时间吸我的知识 👆

网管整理了一本《Go 开发参考书》收集了70多条开发实践。去公众号回复【gocookbook】领取!还有一本《k8s 入门实践》讲解了常用软件在K8s上的部署过程,公众号回复【k8s】即可领取!


觉得有用就点个在看  👇👇👇

评论 (1)
乖乖兔爸爸2023-03-09 09:21
线给你点个赞吧!
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 118浏览
  • 曾几何时,汽车之家可是汽车资讯平台领域响当当的“扛把子”。2005 年成立之初,它就像一位贴心的汽车小助手,一下子就抓住了大家的心。它不仅吸引了海量用户,更是成为汽车厂商和经销商眼中的“香饽饽”,广告投放、合作推广不断,营收和利润一路高歌猛进,2013年成功在纽交所上市,风光无限。2021年更是在香港二次上市,达到了发展的巅峰,当年3月15日上市首日,港股股价一度高达184.6港元,市值可观。然而,如今的汽车之家却陷入了困境,业务下滑明显。业务增长瓶颈从近年来汽车之家公布的财报数据来看,情况不容
    用户1742991715177 2025-04-07 21:48 117浏览
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 256浏览
  • 文/郭楚妤编辑/cc孙聪颖‍伴随贸易全球化的持续深入,跨境电商迎来蓬勃发展期,物流行业 “出海” 成为不可阻挡的必然趋势。加之国内快递市场渐趋饱和,存量竞争愈发激烈。在此背景下,国内头部快递企业为突破发展瓶颈,寻求新的增长曲线,纷纷将战略目光投向海外市场。2024 年,堪称中国物流企业出海进程中的关键节点,众多企业纷纷扬帆起航,开启海外拓展之旅。然而,在一片向好的行业发展表象下,部分跨境物流企业的经营状况却不容乐观。它们受困于激烈的市场竞争、不断攀升的运营成本,以及复杂的国际物流环境,陷入了微利
    华尔街科技眼 2025-04-09 15:15 99浏览
  •   物质扩散与污染物监测系统:环境守护的关键拼图   一、物质扩散原理剖析   物质扩散,本质上是物质在浓度梯度、温度梯度或者压力梯度等驱动力的作用下,从高浓度区域向低浓度区域迁移的过程。在环境科学范畴,物质扩散作为污染物在大气、水体以及土壤中迁移的关键机制,对污染物的分布态势、浓度动态变化以及环境风险程度有着直接且重大的影响。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这些成功案例为物质
    华盛恒辉l58ll334744 2025-04-09 11:24 66浏览
  • ## DL/T645-2007* 帧格式:* 帧起始字符:68H* 地址域:A0 A1 A2 A3 A4 A5* 帧起始字符:68H* 控制码:1字节* 主站:* 13H:请求读电能表通信地址* 11H:请求读电能表数据* 1CH:请求跳闸、合闸* 从站:* 91H:正常应答读电能表* 9CH:正常应答跳闸、合闸* 数据域长度:1字节* 数据域:DI0 DI1 DI2 DI3* 发送方:每字节+33H* 接收方:每字节-33H* 数据标识:* 电能量* 最大需量及发生时间* 变量* 事件记录*
    四毛打印店 2025-04-09 10:53 70浏览
  • 文/Leon编辑/侯煜‍就在小米SU7因高速交通事故、智驾性能受到质疑的时候,另一家中国领先的智驾解决方案供应商华为,低调地进行了一场重大人事变动。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)4月4日上午,有网友发现余承东的职务发生了变化,华为官网、其个人微博认证信息为“常务董事,终端BG董事长”,不再包括“智能汽车解决方案BU董事长”。余承东的确不再兼任华为车BU董事长,但并非完全脱离华为的汽车业务,而是聚焦鸿蒙智行。据悉,华为方面寻求将车BU独立出去,但鸿蒙智行仍留在华为终端BG部门。
    华尔街科技眼 2025-04-09 15:28 98浏览
  •   卫星图像智能测绘系统全面解析   一、系统概述   卫星图像智能测绘系统是基于卫星遥感技术、图像处理算法与人工智能(AI)技术的综合应用平台,旨在实现高精度、高效率的地理空间数据获取、处理与分析。该系统通过融合多源卫星数据(如光学、雷达、高光谱等),结合AI驱动的智能算法,实现自动化、智能化的测绘流程,广泛应用于城市规划、自然资源调查、灾害监测等领域。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星图像智能测绘系统
    华盛恒辉l58ll334744 2025-04-08 15:04 105浏览
  •   卫星图像智能测绘系统:地理空间数据处理的创新引擎   卫星图像智能测绘系统作为融合卫星遥感、地理信息系统(GIS)、人工智能(AI)以及大数据分析等前沿技术的综合性平台,致力于达成高精度、高效率的地理空间数据采集、处理与应用目标。借助自动化、智能化的技术路径,该系统为国土资源管理、城市规划、灾害监测、环境保护等诸多领域输送关键数据支撑。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉北京五木恒润卫星图像智能测绘系统。这些成功案例为卫星
    华盛恒辉l58ll334744 2025-04-08 16:19 88浏览
  •   物质扩散与污染物监测系统软件:多领域环境守护的智能中枢   北京华盛恒辉物质扩散与污染物监测系统软件,作为一款融合了物质扩散模拟、污染物监测、数据分析以及可视化等多元功能的综合性工具,致力于为环境科学、公共安全、工业生产等诸多领域给予强有力的技术支撑。接下来,将从功能特性、应用场景、技术实现途径、未来发展趋势等多个维度对这类软件展开详尽介绍。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这
    华盛恒辉l58ll334744 2025-04-09 14:54 120浏览
  • HDMI从2.1版本开始采用FRL传输模式,和2.0及之前的版本不同。两者在物理层信号上有所区别,这就需要在一些2.1版本的电路设计上增加匹配电路,使得2.1版本的电路能够向下兼容2.0及之前版本。2.1版本的信号特性下面截取自2.1版本规范定义,可以看到2.1版本支持直流耦合和交流耦合,其共模电压和AVCC相关,信号摆幅在400mV-1200mV2.0及之前版本的信号特性HDMI2.0及之前版本采用TMDS信号物理层,其结构和参数如下:兼容设计根据以上规范定义,可以看出TMDS信号的共模电压范
    durid 2025-04-08 19:01 175浏览
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 164浏览
  • 文/Leon编辑/cc孙聪颖‍转手绢、跳舞、骑车、后空翻,就在宇树、智元等独角兽企业率领“机器人大军”入侵短视频时,却有资本和科技大佬向此产业泼了一盆冷水。金沙江创投管理合伙人朱啸虎近日突然对人形机器人发难,他表示“最近几个月正在批量退出人形机器人公司”。“只是买回去做研究的,或者买回去做展示的,这种都不是我们意义上的商业化,谁会花十几万买一个机器人去干这些活?”朱啸虎吐槽。不过,朱啸虎的观点很快就遭到驳斥,众擎机器人的创始人、董事长赵同阳回怼道:“(朱啸虎)甚至问出了人形机器人在这个阶段有什么
    华尔街科技眼 2025-04-07 19:24 153浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 159浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 194浏览
我要评论
1
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦