AdvancedMaterials等“锂硫电池”专题:空心(或多孔)载体负载单原子(超高密度)催化剂!

锂电联盟会长 2023-02-12 11:19
点击左上角“锂电联盟会长”,即可关注!
前言:
锂硫电池(LSBs)具有较高的理论能量密度(2600 Wh kg-1)和比容量(1675 mAh g-1),是公认的有发展前景的新一代电化学储能技术。然而,由于正多硫化物的穿梭效应和缓慢的氧化还原转换动力学,硫电极的电子导电性低,电化学循环稳定性差,严重限制了其商业开发。
合理设计轻质、高稳定性、高负载能力和高催化活性的碳材料(如外来活性组分(例如金属单原子)功能化空心碳纳米笼),可以同时抑制多硫化物的穿梭效应(通过物理和化学关联吸附),提高LSBs的氧化还原转化动力学(通过催化转化额外的活性位点)。碳纳米笼的不同形貌(石墨烯类纳米笼、立方纳米笼或多面体纳米笼、球形纳米笼)、不同的多孔结构(微孔和/或介孔结构)、不同的内部结构(空心或瓶中船结构)对硫吸附和多硫化物转化具有不同的影响(详见下图)【1】。 
图1 用于高性能锂硫电池的空心碳纳米笼【1】: (A) S@graphene-like碳纳米笼,(B) S@cubic碳纳米笼,(C) S@polyhedral碳纳米笼,(D) S@hollow多孔碳球,(E) S@Con-hollow多孔碳球,(F) S@carbon纳米片/多孔碳瓶中船结构。

案例1:
早在2016年,Guo团队就开发了一种独特的类石墨烯碳纳米笼,并将其作为高速率、长寿命LSBs中的硫载体(详见图1A)。碳纳米笼由多层石墨化sp2碳包围,内腔直径约为3~5nm。由于碳纳米笼的孔隙体积大,可以通过溶液法将高负荷(77wt.%)的硫纳米颗粒加载到石墨烯碳笼单元中,实现硫的高效分散,充分发挥其电化学活性。碳纳米笼中良好的石墨烯层不仅有利于电子的高速传输,还能有效抑制多硫化物的溶解和穿梭,提高循环性能。
硫碳复合正极在0.1 C电流密度下的比容量为1375 mAh g-1,在5C电流密度下的比容量为765 mAh g-1; 本研究提出了类石墨烯碳纳米笼作为硫纳米颗粒的高性能载体材料,为合理设计具有长寿命、高倍率性能的硫碳复合电极材料开辟了新思路。

案例2:
2019年,Hu和同事报道了一种耐用的高功率LSBs阴极,其相互连接的立方空心N掺杂碳纳米阱封装了纳米级硫(S@hNCNC)作为有源层(详情见图1 B)。通过电催化实验和理论模拟,揭示了碳纳米笼吸附硫与氮掺杂sp2碳催化转化多硫化锂的协同效应。S@hNCNC作为一种无金属催化剂,在电催化高效转化硫方面表现出优异的性能。
在20 A g-1的高电流密度下,获得了539 mAh g-1的高容量。在10 A g-1下的1000次循环证明了井的耐用性,保留容量为438 mAh g-1。本研究巧妙地将“物理限制”、“化学吸附”和“催化转化”功能整合到氮掺杂碳纳米笼中,有效抑制了极化效应和穿梭效应,为获得高功率、长寿命锂LSBs电极材料提供了指导。 

案例3:
最近,在2021年,Wang等人以最好的Ni-N5活性基团和氮掺杂空心多面体碳纳米笼为硫正极载体材料,构建了一种孤立单原子镍(Ni-N5/HNPC)的多功能催化剂(参见图1C)。研究发现,该载体提高了硫的电导率,增强了锂多硫化物的物理化学双重限制能力,更重要的是通过Ni-N5的活性位点促进了氧化还原反应的动力学。
因此,制备的Ni-N5/HNPC/S阴极可作为LSBs的理想硫阴极,且Ni-N5/HNPC/S阴极具有优异的倍率性能(4℃时平均比容量为684 mAh g-1)、长期循环稳定性(循环500次后,每循环容量衰减率为0.053%)。本工作突出了活性位配位数在单原子催化剂中的重要作用,并为设计高性能LSBs的单原子活性位功能化空心纳米结构提供了一种策略。 

案例4:
在硫向空心碳加载过程中,一个相对被忽视的因素是,熔融硫或硫溶解溶液(通常是硫/CS2溶液)与碳的相容性较低或中等(部分湿润),使得利用毛细管原理很难将硫完全注入空心碳。Moon团队最近从实验和理论上揭示了硫溶液中碳表面界面能的调节是促进硫完全包覆的关键(详见图1 D)。采用中空多孔碳球(HPCS)作为碳载体,该碳球具有分层孔隙结构(孔洞大孔,壳层中孔)。
硫溶液用异丙醇(IPA)或N-甲基-2-吡咯烷酮(NMP)或CS2制备。硫/CS2溶液在碳表面的润湿性较低(硫沉积在HPCS的外表面),导致渗透性较差。含有IPA的溶液由于表面张力低,因此硫液-碳界面能低,从而提高了穿透能力(硫沉积在HPCS的外壳内)。NMP与碳高度相容,因此,含有NMP的溶液具有最强的渗透性(硫沉积在HPCS的内表面)。值得注意的是,硫在碳纳米笼中的充分分散是设计高性能LSBs的关键。

案例5:
最近,Zhang等人也成功合成了以Co原子为双官能硫宿主功能化的多孔空心碳(HC)纳米球,其Co原子(包括单原子Co和Co团簇Con)在HC纳米球的微孔中得到了很好的支持(详见图1 E)。使用HC纳米球作为理想的框架,可以实现Co纳米颗粒的初始锚定和随后的S包封。在每个HC反应器中,有趣的是硫分子的扩散可以拖动Co (Con)原子迁移到碳壳中,形成新的Con-HC宿主。
S@Con-HC在钠硫电池中表现出优异的电化学性能,表明最大限度地利用原子优化了Co金属在提高硫导电性、激活硫反应性、固定硫和转化多硫化物方面的多种功能。结果表明,在HC纳米球内,Co原子能有效地电催化Na2S4还原为最终产物Na2S。本工作将原子金属引入电极设计,创新性地连接了电池和电催化剂领域,为各种硫电池技术提供了新的电极材料设计方向。

案例6:
为了改善电极材料的体积性能,采用瓶中船结构的碳纳米笼可以通过提高内部利用率来装载高含量硫。2021年,Ma等报道了在碳纳米片@多孔碳球中构建高性能硫碳复合电极的船装瓶结构(详见图1F)。首先,通过限制热解Zn, Co沸石-咪唑啉骨架包覆间苯二酚三聚氰胺甲醛(ZIF@RMF),制备了具有定制内部碳纳米片的N掺杂空心碳纳米笼(CNC)。相互连接的腔体和多孔碳骨架确保了高硫含量(80 wt.%)时硫阴极的良好分散和固定。
此外,碳表面发育的微孔和众多的氮官能团有利于多硫化物的化学吸附转化和Li2S的均匀生长。所得到的S/CNCs阴极具有1310 mAh g-1@0.2 C的高初始容量,在8 C时具有762 mAh g-1的优异速率性能,以及800次循环后具有841 mAh g-1的可逆容量的超高稳定性。这些发现为今后开发具有高倍率性能和长寿命的实用型lsb提供了有效的方法。
近期,徐氏团队还成功合成了一种瓶中船纳米笼结构,即介孔Mo2C@微孔碳纳米笼的蛋黄壳结构,作为LSBs的硫宿主材料。碳纳米笼的微孔壳抑制了多硫化物的穿梭,缩短了电荷/质量扩散距离。Mo2C@碳纳米笼蛋黄壳中空结构提供了缓冲空间,以适应放电-充电过程中的体积变化。 

案例7:
在提高硫负载和保证良好分散的前提下,设计致密的三维多孔碳网络,碳纳米笼相互连接,尺寸小,也是提高锂-S电池硫电极容量性能的可行策略。就在2022年(10月),北京理工大学的陈教授、复旦大学的徐教授、安徽工业大学的吴教授等人构建了一种高效的双金属单原子功能化碳纳米笼三维互联网络电催化剂,将N配位的二元金属Fe/Co单原子(Fe/Co SAs)植入N掺杂的分层多孔碳(N-HPC)小纳米笼骨架中(详见图2)。采用膜镀膜策略,在分离器上捕获和催化了多硫化物的高效转化。
结果表明,Co原子的引入可以丰富Fe活性中心的电子数,从而实现二元金属SAs催化剂的显著协同催化作用,改善Li-S氧化还原反应的双向催化。得益于致密小碳纳米笼的高效吸附和二元金属SAs在促进锂-多硫化物转化过程中的共催化作用,使用Fe/Co SAs-N-HPC改性隔膜的锂-S电池在低硫负载和高硫负载条件下的电化学性能均有较大提高。
图2 Fe/Co单原子修饰的互连小尺寸N掺杂空心碳纳米笼用于高性能锂-S电池: (A)合成工艺示意图,(B-D)结构表征,(E-G)电化学性能,(H)器件原理图,(I)多硫化物转换原理图,(J)自由能的理论计算【1】。
除了锂硫(Li-S)电池外,空心碳纳米笼(包括非金属掺杂和金属单原子掺杂结构)还广泛应用于钠硫(Na-S)电池、锂硒(Li-Se)电池、钠硒(Na-Se)电池、钾硒(K-Se)电池,可以有效抑制Li/Na/K多硫化物或Li/Na/K多硒的穿梭效应。Se正极具有优异的电子导电性,其容量与S正极相当,引起了研究人员的广泛关注。但由于硒化物的穿梭效应,Se电极的反应性较低,容量衰减快,阻碍了Li-Se、Na-Se或K-Se电池的实际应用。
例如,分层多腔N掺杂空心碳纳米笼作为高效的聚硒储层,对硒具有较高的吸附能力和较强的化学亲和力,生产的负极材料表现出优异的可逆能力和较长的循环寿命。独特的多腔结构结合表面氨基生成了导电性能高、稳定的三维碳网络,为硒提供了有效的物理化学双重阻挡效应(即聚硒的高效锚定、扩散、转化),获得快速氧化反应动力学。特别地,单原子催化剂(包括传统单原子催化剂和新型的单原子气凝胶催化剂)功能化的碳纳米笼可以作为锂硫电池和其他电池的有前景的催化材料【2】。此外,具有超高活性位点密度的单原子催化剂在促进多硫化物转换展现出密集位点协同效应【3】。
图3 新型的单原子气凝胶催化剂【2】。

作为最有潜力的下一代储能系统之一,锂硫电池(Li-S)不仅具有显著的优势(如2600 wh kg-1的高能量密度),而且还面临许多挑战(低电导率、体积膨胀、聚硫穿梭效应)。 目前解决这些问题最有效的策略之一是引入金属基活性材料(如单原子金属材料)来改善硫阴极的电化学性能,从而对多硫化物Li2Sn (n=1, 2, 4, 8)产生良好的吸附和催化作用。
SACs的引入可以加速Li2Sn的转化,抑制从源头上的穿梭效应,提高Li-S电池的循环性能。 最近Li等人总结了Li-S电池中高密度AFCs应用的最新进展,重点介绍邻近活性位点的协同催化作用(见图4)。总之,科学人员提供联合空心(或多孔)载体效应及单原子催化效应(单原子气凝胶和超高密度位点)有望设计出高性能的“锂硫电池”。
图4基于超高密度SACs多硫化物的催化转换:(A和B) FeN2-NC,(C和D) Fe-NSC,(E和F) CoSA-N-C,(G和H) CoN2,(I, J) Co-SAC【3】。

参考文献:
【1】Li, Z., Li, B., Yu, C., Wang, H., & Li, Q. (2023). Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. Advanced Science, 2206605.
【2】Li, Z., Li, B., & Yu, C. (2023). Atomic Aerogel Materials (or single atom aerogels): an Interesting New Paradigm in Materials Science and Catalysis Science. Advanced Materials, 2211221.
【3】Li, Z., Li, B., Hu, Y., Liao, X., Yu, H., & Yu, C. (2022). Emerging Ultrahigh-Density Single-Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 3(6), 2200041.
来源:科学材料站
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱libatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 101浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 73浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 105浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 168浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 44浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 41浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 170浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦