Pulseskipmode、Burstmode和Hiccupmode三种模式区别

原创 松哥电源 2023-02-11 15:03

开关电源中,Pulse skip mode跳脉冲模式、Burst mode突发模式和Hiccup mode打嗝模式,这3种模式分别针对不同的工作条件,下面对它们做详细的说明。

Pulse skip mode跳脉冲模式、Burst mode突发模式主要针对输出轻载或空载条件下的工作状态。

Hiccup mode打嗝模式主要针对输出短路条件下的工作状态。

1、 Pulse skip mode跳脉冲模式

非同步降压型Buck变换器在满负载输出时,电感电流工作于CCM连续电流模式。系统输出负载从满载到轻载、然后到空载变化过程中,电感平均电流即输出负载电流逐渐降低,电感电流从连续电流工作模式进入DCM非连续电流工作模式,也就是电感电流回到0后,下端续流二极管自然关断,由于开关周期还没有结束,电感电流在0值保持一段时间,直到开关周期结束,进入下一个开周期。

开关电源工作在非连续电流模式后,若负载电流进一步降低,为了维持输出电压的调节,上管的开通时间将减小,直到达到控制器的最小导通时间。上管的开通时间达到控制器的最小导通时间后,若负载电流仍然在降低,控制器就必须屏蔽掉、即跳掉(去除)一些开关脉冲,以维持输出电压的调节,这种控制方法即为跳脉冲模式Pulse skip mode

如果是同步降压型Buck变换器,下管为功率MOSFET,在电感电流过0后,若下管继续维持导通状态,输出电容的电压通过电感和下管组成回路反向激磁,形成反向电流,也就是输出反灌电流,这将影响系统在轻载和空载的效率。因为输出反灌电流没有参与输入到输出的能量传输,相当于每个开关周期在系统中空转,回路的电阻产生直流损耗。

图1 Pulse skip mode跳脉冲模式

同步降压型Buck变换器,如果系统检测到输出负载低于一定值时,下管停止工作,相当于进入到非同步工作方式。

例如,Buck变换器的输入电压为3.3V,输出电压为2.5V的,输出满负载电流Io=1.25A,轻载电流Io=50mA,工作频率为1MHz,电感L=2.2uH,输出电容为22uF,陶瓷电容。如图1所示,在50mA的轻载输出电流下,系统工作在跳脉冲模式时,电感电流为DCM模式,每个开关周期,电感电流过0并保持一段时间后才进入下一个开关周期。

2、Burst mode突发模式

为了提高系统轻载和空载效率,当输出负载降到一定值时,同步降压型Buck变换器进入到Burst mode突发模式,如图2所示。此时,系统连续工作几个开关周期,输出电压逐渐升高,输出电压升高到一定值时,系统停止工作,其停止工作的时间较长;系统停止工作后,输出电压逐渐下降,直到输出电压降低到某一值时,系统再开始工作,如此反复,这种工作模式即为Burst mode突发模式

同时,系统在此模式下工作,如果检测到电感电流过0,立刻关断下管,防止产生反向电流,提高系统效率。

Burst mode突发模式系统工作的时间很短,停止工作的时间很长,因此极大的降低了开关损耗,提高系统的效率。另一方面,由于上管停止工作的时间很长,在此期间,输出电容将维持输出负载的能量,因此输出电容的纹波电压大,即输出纹波电压大。

同样的,Buck变换器的输入电压为3.3V,输出电压为2.5V的,输出满负载电流Io=1.25A,轻载电流Io=50mA,工作频率为1MHz,电感L=2.2uH,输出电容为22uF,陶瓷电容。系统工作在突发模式时,上管开关工作的时间为3uS,而上管停止开关工作的间歇时间为9uS,输出电压纹波峰峰值高达20mV。

图2  Pulse skip mode跳脉冲模式

从图3可以看到2种模式轻载时效率和输出电压纹波比较,Burst mode突发模式的轻载效率高于Pulse skip mode跳脉冲模式,其输出电压纹波也大于Pulse skip mode跳脉冲模式。

   

(a) 效率比较  

 (b) 输出纹波比较

图3 轻载模式效率和输出纹波

3、Hiccup mode打嗝模式

电流模式的开关电源变换器逐个脉冲限流功能无法提供有效的输出短路保护,为了实现系统安全操作,当控制器检测到输出短路过流时,关断上管(主开关管)的工作,系统停止工作一段时间,然后,系统重新起动开始工作。如果输出短路消除,系统就进入到正常工作;如果输出短路依然存在,系统重复以上过程,如此反复,这种工作(保护)方式称为Hiccup打嗝工作模式

图4  Hiccup mode打嗝模式波形

图5  Hiccup mode打嗝模式放大波形

图4和图5为Hiccup mode打嗝模式工作波形,可以看到,系统检测到输出短路过流后就停止工作,然后重启工作,如此反复。

松哥电源 松哥电源,致力于提供一个电力电子及电源系统设计与交流的空间,聚集背景相类、价值观相同的电子工程师的智慧,探讨理论,关注细节,评说经验,分享电力电子及电源系统设计的快乐。
评论 (2)
zhangshun52332023-12-13 21:56
zhangshun5233: 输入电压为3.3V,输出电压为2.5V,工作频率为1MHz,电感为L=2.2uH,根据这四个参数计算得到纹波电流的一半为275.48mA/2=137.74mA;这时,理论上50mA的轻载输出电流并不能使电感电路在DCM状态呀?
啊,小于137.74mA就会进入DCM模式,没错~
zhangshun52332023-12-13 21:53
输入电压为3.3V,输出电压为2.5V,工作频率为1MHz,电感为L=2.2uH,根据这四个参数计算得到纹波电流的一半为275.48mA/2=137.74mA;这时,理论上50mA的轻载输出电流并不能使电感电路在DCM状态呀?
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 106浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 124浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 84浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 173浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 117浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 84浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 92浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 142浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 60浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 114浏览
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 255浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 269浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 151浏览
我要评论
2
7
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦