干货分享:数字芯片设计全流程分析

智能计算芯世界 2023-02-08 08:00


《芯片设计五部曲》模拟IC、数字IC、存储芯片、算法仿真和总结篇(排名不分先后)。


上一集我们已经说了,模拟IC,更像是一种魔法

我们深度解释了这种魔法的本质,以及如何在模拟芯片设计的不同阶段,根据常见的EDA工具特性和原理,从计算角度帮助模拟工程师更高效地完成吟唱施法

芯片设计五部曲之一 | 声光魔法师——模拟IC


第二集:数字IC


假如我们想要录制一段声音,模拟信号的做法是把所有的声音信息用一段连续变化的电磁波或电压信号原原本本地记录下来。而按照一定的规则将其转换为一串二进制数0和1,然后用两种状态的信号来表示它们,这叫数字信号

处理数字信号的芯片就是数字芯片,比如常见的CPU、GPU

当声音变大或变小了,模拟信号都会跟着变化,所以模拟信号有无数种状态。状态之间微妙的差异,需要人的经验判断,有点玄学的成分

而数字信号永远只有0和1两种状态,信号的转换严格遵循逻辑关系,一个输出对应唯一确定的结果,程序完全依照输出指令执行,这是科学


数字IC设计工程师的设计目标:在PPA(Power、Performance、Area)三个指标上追求完美的平衡。

怎么玩转这门科学?

这,是一种艺术。


今天,我们就从资源需求、并行特征、数据敏感度等角度展开聊聊在数字芯片设计各阶段,如何利用不同EDA工具的特点,让数字芯片的设计研发效率获得显著提升

和模拟芯片相呼应,这篇还是从计算角度出发,至于调度/管理/数据/协同/CAD等视角,会在后面的文章里体现~(比如第三集


和模拟相比,数字芯片需要使用EDA工具的场景更多,IC工程师们对于计算机的使用天然比较亲近。但就跟《解密一颗芯片设计的全生命周期算力需求一样,只负责某项工作的研发可能不关心,或者只了解自己的这部分,IT对业务所知有限,也不一定清楚。除非有大佬坐镇,大多数公司的日常大概是以拍脑袋经验论为主


我们先来看一下大画面,数字芯片设计全流程分析图


01

数字前端:前端设计/验证


这一阶段包含了规格制定、架构设计、RTL编码等步骤。
数字前端算法仿真和功能验证场景有大量中小任务并行,这一阶段,对于资源类型和用量通常无特殊需求
不过需注意若大量使用现有IP通常没有算法仿真这一步。而且每家公司业务不同,算法仿真需求量差异非常大(下一集主角就是ta)。

02

数字中端:逻辑综合与DFT实现


这一阶段可分为逻辑综合、形式验证、门级仿真、ATPG验证等业务场景。
数字中端呈现单、多任务混合的特点,因为计算的输入数据中包含门延迟信息,输入数据变多,对内存的需求相比前端有一定增长。ATPG验证建议内存优化型,其他三种场景更加偏计算密集型。

03

数字后端:物理实现


这一阶段包括布局布线、形式验证、版图验证、寄生参数提取、后仿、ATPG验证、静态时序分析和IR分析等业务场景。
数字后端基本都是多任务,由于包含版图的寄生参数,信息量非常大,普遍需要大内存机器。其中,布局布线、后仿、静态时序分析、IR分析的大任务数量非常多,对主频也有要求,需要兼具高主频和大内存的资源



资源需求

后端>中端>前端,数字后端·真·资源黑洞


把数字IC设计前、中、后端三大阶段进行资源需求对比。
可以看到无论是任务运算时间、所需计算资源、存储需求还是IP与输入数据量级上,数字前中后端形成了非常明显的阶梯结构,整体资源需求呈现前端<中端<后端的趋势。

这是由三个阶段的具体工作内容决定的:

数字前端,用RTL代码将芯片架构师的设计写出来,前端验证也主要是针对RTL的功能进行验证,偏逻辑功能

数字中端,需要将RTL代码综合成网表并规划、插入各种用于芯片测试的逻辑电路,需要加入Foundry厂提供的标准单元库的工艺参数,验证也到了逻辑门这一级。

数字后端负责芯片的物理实现,先将电路网表通过自动布局布线画成版图,再进行寄生参数提取,创建一个可以精确模拟数字电路响应的模型,这一阶段会加入版图的寄生参数

从代码到逻辑门电路再到物理层,随着阶段的演进,信息量逐级递增,计算时所需消耗的资源量也随之增加


而在28nm以及更先进制程下,包含的工艺参数更多,电路更复杂,前中后端每一阶段的信息量级还会被进一步放大。

哪怕前端RTL基本一致,中端和后端因为Foundry厂工艺参数更多更复杂,同样的代码计算量也是更大的。


换个思路,我们举个栗子

通过一个在数字前中后端都会出场的EDA工具来看看三大阶段的资源需求


VCS的主要作用是将Verilog HDL(一种硬件描述语言)转成C语言,编译出来并执行。作为一个翻译官,ta的工作量取决于双方对话的频率,以及需要翻译的文本量。

VCS在前端的功能验证、中端的门级仿真、后端仿真中都有出场,在不同阶段对任务资源的需求完全不同:

从前端到中端再到后端,虽然VCS的工作性质没变,但整体来说,消耗的资源越来越多了。


综上,数字后端设计与验证环节相比中端和前端资源需求更高、运算时间更长、数据量更大,往往会占据整个项目周期资源需求量的50%以上。


下图是我们某客户全生命周期月度算力实际用量曲线,可以看到后端的波峰相当明显,详情戳:解密一颗芯片设计的全生命周期算力需求

这也就意味着,数字后端对IC设计公司的压力相当大,能否在这一阶段获取充足的资源,是提升研发效率、保障项目进度的关键。



典型并行场景

静态时序验证&版图验证


并行度是我们评估任务能否通过分布式计算完成,提升效率的标准之一。
这里涉及到两个重要的判断标准:可拆分,互不干扰
可拆分指的是,大任务可以分解为小任务,原任务目标不变。

互不干扰指的是,拆分为小任务之后,任务之间互相不干扰,可以不同步。


从前端到中端再到后端,任务数量越来越多。

任务的并行度决定了速度提升的空间。



静态时序验证:最常见且并行度较高


静态时序验证是最常见的设计场景之一,基本原理是检查各信号通路上经过的门电路,然后累加门延迟,求取整个路径的信号延迟。

沿信号通路求Delay Time的过程,就是沿信号通路不停做简单加法。


在静态时序验证过程中,有一个PVT的概念。

我们需要验证逻辑门在不同的工艺(Process)、电压(Voltage)、温度(Temperature)条件下的延迟。


首先,列出可能的条件,如:

工艺:TT、FF、SS……

电压:0.9V、1.0V、1.1V……

温度:-40°C、0°C、25°C……


随后,穷举每一种可能性,如:

PVT1=TT、0.9V、-40°C

PVT2=TT、1.0V、25°C

PVT3=TT、1.0V、0°C

……


最后,验证逻辑门在每一种PVT条件下的延迟:


数字芯片中有着无数这样的逻辑门,每一个PVT下,逻辑门都有对应的Delay Time,而P、V、T之间可以有很多种组合,就会有很多个Delay Time的情况需要验证。

这一场景,天然适合暴力堆机器。


版图验证:最高并行度


模拟芯片和数字芯片,这一场景的原理一模一样,使用的EDA工具也完全相同。


版图验证属于检查类任务,以模块为单位,本质上是数据对比工作,重内存需求,子任务间没有数据关联,是数字芯片设计与验证中并行度最高的场景。


这一阶段很适合利用云上的内存优化型资源,使用“小F影分身术(版图分割术),通过暴力堆资源的方式快速完成任务。

关于版图验证,我们在芯片设计五部曲之一 | 声光魔法师——模拟IC》中有更详细的说明。




数据敏感度

前端>中端>后端,但是不用担心


我们按照数据敏感度从高到低的顺序给各类设计数据排了个序:
RTL数据 > IP、PDK和版图 > Netlist、Session、过程波形、归档数据和Report

好了,接下来我们看看这些数据都会出现在哪些阶段:

数字前端有大量RTL代码,甚至部分公司在此过程中还自己开发了IP,属于数据安全等级最高的那一拨。许多公司都会严格管理这部分数据,设置一定的保密等级,甚至固定放在某几台机器上。

中端则涉及到部分的RTL代码、IP和PDK数据,以及一些Netlist、Session和Report。

后端彻底告别了代码,以IP、PDK、版图和数据敏感度较低的数据为主。


如果你要做一款游戏,前端相当于游戏的源代码,中端是详细的角色形象设计稿,后端就是玩家拿到手的游戏光碟了。


前端泄密,恭喜你的对手达成“代码级抄袭”;

中端泄密,别人能照着样子把仿品做出来,但没有源代码参考,知其然不知其所以然;

后端泄密,等对方逆向明白,大半年时间也过去了,你的下一代产品已经在路上了。

值得一提的是,如果使用的是先进工艺,Foundry厂也会对IP/PDK数据有保密要求。


所以在选择云上业务场景的时候,我们一般优先推荐数字后端先来。当然,会根据每家公司的实际情况进行具体分析。(以后会写到,这次一定


那么,前端或者中端是不是就适合用云了呢?

甚至,在某些情况下,IC设计公司会面临全部数据无论敏感度高低必须存放在本地的情况,比如一些高保密项目(军工项目或国家重点项目),或者有点微妙的竞争关系,怎么办?

我们有针对性的存算分离解决方案欢迎来对号入座。


存算分离解决方案到底是什么?我们是如何实现的?扫描文末二维码关注小F,对暗号“存算分离”抢先了解~

这里还有燧原科技的一手体验,戳此先睹为快:【案例】燧原科技:芯片设计“存算分离”混合云实践



关于数字IC设计,从不同设计阶段的计算任务视角出发,我们总结了四点:

1、与模拟芯片相似,数字芯片三大阶段的资源需求同样呈现前期<中期<后期的趋势,但数字芯片需要使用EDA工具的场景更多,整体资源需求更大;
2、版图验证并行度最高,静态时序验证出场率非常高且并行度很高,都适合用暴力堆机器的方式提高任务效率; 
3、数字后端往往会占据整个项目周期资源需求量的50%以上,兼具资源需求高、计算时间长、数据量级大,数据敏感度相对低的特征,是提升数字芯片整体研发效率的关键; 
4、数据敏感度高?必须放本地?没关系,我们有解决办法。


芯片设计五部曲的第二集——数字IC篇到此结束啦。
敬请期待第三集!

关于fastone云平台在各种EDA应用上的表现,可以点击以下应用名称查看:
HSPICE │ OPC │ VCS │ Virtuoso


 END -

我们有个IC设计研发云平台
集成多种EDA应用,大量任务多节点并行
应对短时间爆发性需求,连网即用
跑任务快,原来几个月甚至几年,现在只需几小时
5分钟快速上手,拖拉点选可视化界面,无需代码
支持高级用户直接在云端创建集群 

扫码免费试用,送300元体验金,入股不亏~

更多EDA电子书
欢迎扫码关注小F(ID:imfastone)获取


你也许想了解具体的落地场景:
王者带飞LeDock!开箱即用&一键定位分子库+全流程自动化,3.5小时完成20万分子对接
这样跑COMSOL,是不是就可以发Nature了
Auto-Scale这支仙女棒如何大幅提升Virtuoso仿真效率?
1分钟告诉你用MOE模拟200000个分子要花多少钱
LS-DYNA求解效率深度测评 │ 六种规模,本地VS云端5种不同硬件配置
揭秘20000个VCS任务背后的“搬桌子”系列故事
155个GPU!多云场景下的Amber自由能计算
怎么把需要45天的突发性Fluent仿真计算缩短到4天之内?
大规模OPC上云,5000核并行,效率提升53倍
提速2920倍!用AutoDock Vina对接2800万个分子
从4天到1.75小时,如何让Bladed仿真效率提升55倍?
从30天到17小时,如何让HSPICE仿真效率提升42倍?

关于为应用定义的云平台
芯片设计五部曲之一 | 声光魔法师——模拟IC
【ICCAD2022】首次公开亮相!国产调度器Fsched,半导体生态1.0,上百家行业用户最佳实践
解密一颗芯片设计的全生命周期算力需求
居家办公=停工?nonono,移动式EDA芯片设计,带你效率起飞
缺人!缺钱!赶时间!初创IC设计公司如何“绝地求生”?
续集来了:上回那个“吃鸡”成功的IC人后来发生了什么?
一次搞懂速石科技三大产品:FCC、FCC-E、FCP
速石科技成三星Foundry国内首家SAFE™云合作伙伴
EDA云平台49问
亿万打工人的梦:16万个CPU随你用
帮助CXO解惑上云成本的迷思,看这篇就够了
花费4小时5500美元,速石科技跻身全球超算TOP500

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 103浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 155浏览
  •                                                窗        外       年底将近,空气变得格外寒冷,估计这会儿北方已经是千里
    广州铁金刚 2024-12-23 11:49 158浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 210浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 129浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 179浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 272浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 287浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 177浏览
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 209浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 196浏览
  • 在强调可移植性(portable)的年代,人称「二合一笔电」的平板笔电便成为许多消费者趋之若鹜的3C产品。说到平板笔电,不论是其双向连接设计,面板与键盘底座可分离的独特功能,再加上兼具笔电模式、平板模式、翻转模式及帐篷模式等多种使用方式,让使用者在不同的使用情境下都能随意调整,轻巧灵活的便利性也为多数消费者提供了绝佳的使用体验。然而也正是这样的独特设计,潜藏着传统笔电供货商在产品设计上容易忽视的潜在风险。平板笔电Surface Pro 7+ 的各种使用模式。图片出处:Microsoft Comm
    百佳泰测试实验室 2024-12-19 17:40 285浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 192浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 115浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 217浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦