【喂到嘴边了的模块】害怕追新?LVGL8发布稳定性更新(附部署教程)

小飞哥玩嵌入式 2023-02-07 12:31



【说在前面的话】



LVGL的刚刚完成了对LVGL8的维护更新,发布了v8.3.5版。相对master分支上正在开发的LVGL9,该版本是一个吐血推荐的稳定版本:
  • 它是 LVGL8 的维护性更新,API保持不变,只做了一些修修补补的工作
  • 修复和更新了对众多GPU的支持,包括
    • Arm-2D
    • NXP-PXP NXP-VGLite
    • 部分重构了 STM32 DMA2D 的驱动

用LVGL做产品的小伙伴可以放心食用。

【如何获取 LVGL cmsis-pack】


1、用户可以通过LVGL在Github的仓库直接下载:


https://github.com/lvgl/lvgl/tree/release/v8.3/env_support/cmsis-pack


2、关注公众号【裸机思维】后,发送消息“LVGL”获取网盘链接。

3、用户也直接通过MDKPack-Installer进行直接安装,就像lwIP那样:

无论采用哪种方法,一旦完成安装,以后就可以通过Pack-Installer来获取最新版本啦。


【如何在MDK中部署LVGL】



步骤一:配置RTE

MDK中通过菜单 Project->Manage->Run-Time Enviroment 打开RTE配置窗口:


RTE配置界面中找到LVGL,将其展开:

与其它平台下部署LVGL不同,cmsis-pack允许大家像点菜那样只将所需的模块(或者功能)加入到工程中。


注意,这里必点的是“Essential”,它是LVGL的核心服务。一般来说,为了使用LVGL所携带的丰富控件(Widgets),我们还需要选中“Extra Themes”。如果你是第一次为当前硬件平台进行LVGL移植,则非常推荐加点“Porting”——它会为你添加移植所需的模板,非常方便。

单击“OK”关闭RTE配置窗口,我们会看到LVGL已经被加入到工程列表中了:


此时,我们就已经可以成功编译了。





步骤二:配置LVGL

将LVGL展开,找到配置头文件 lv_conf_cmsis.h

该文件其实就是LVGL官方移植文档中所提到的lv_conf.h,它是基于lv_conf_template.h 修改而来。值得说明的是,一些模块的开关宏都被删除了,例如:

LV_USE_GPU_ARM2DLV_USE_GPU_STM32_DMA2DLV_USE_GPU_NXP_PXP……

这是因为,当我们在RTE配置窗口中勾选对应选项时,cmsis-pack就会自动把对应的宏定义加入到 RTE_Components.h 里——换句话说,再也不用我们手动添加啦!

其它对LVGL的配置,请参考官方文档,这里就不再赘述。


步骤三:使用模板进行移植

当我们在RTE中选择了porting模块后,三个移植模板会被加入到工程列表中。


它们是可以编辑的,保存在当前工程的RTE/LVGL目录中。


这些模板极大的简化了我们的驱动移植过程,下面,我们将以lv_port_disp_template为例,为大家介绍这些模板的使用方法:

1、打开 lv_port_disp_template.h,将开头处 #if 0 修改为 #if 1,使整个头文件生效:



2、打开 lv_port_disp_template.c,将开头处 #if 0 修改为 #if 1,使整个远文件生效。


4、根据官方 porting 文档的指导,根据你的硬件实际情况,在三种缓冲模式中做出选择:


需要特别强调的是:如果你的系统没有 DMA或者替用户完成Frame Buffer刷新的专门LCD控制器,那么双缓冲其实是没有意义的(因为无论如何都是CPU在干活,因此不会比单缓冲模式有任何性能上的本质不同)


5、找到 disp_init() 函数,并在其中添加LCD的初始化代码。 该函数会被 lv_port_disp_init() 调用。


6、找到 disp_flush()函数,并根据你的硬件实际情况,将其改写。比如这是使用 GLCD_DrawBitmap进行实现的参考代码:


/*Flush the content of the internal buffer the specific area on the display *You can use DMA or any hardware acceleration to do this operation in the background but *'lv_disp_flush_ready()' has to be called when finished.*/static void disp_flush(lv_disp_drv_t * disp_drv, const lv_area_t * area, lv_color_t * color_p){    if (disp_flush_enabled) {        GLCD_DrawBitmap(area->x1,               //!< x                        area->y1,               //!< y                        area->x2 - area->x1 + 1,    //!< width                        area->y2 - area->y1 + 1,    //!< height                        (const uint8_t *)color_p);    }    /*IMPORTANT!!!     *Inform the graphics library that you are ready with the flushing*/    lv_disp_flush_ready(disp_drv);}




GLCD_DrawBitmap 用于将给定的显示缓冲区刷新到LCD,其函数原型如下:
/**  \fn          int32_t GLCD_DrawBitmap (uint32_t x, uint32_t y, uint32_t width, uint32_t height, const uint8_t *bitmap)  \brief       Draw bitmap (bitmap from BMP file without header)  \param[in]   x      Start x position in pixels (0 = left corner)  \param[in]   y      Start y position in pixels (0 = upper corner)  \param[in]   width  Bitmap width in pixels  \param[in]   height Bitmap height in pixels  \param[in]   bitmap Bitmap data  \returns   - \b  0: function succeeded   - \b -1: function failed*/int32_t GLCD_DrawBitmap (uint32_t x,                          uint32_t y,                          uint32_t width,                          uint32_t height,                          const uint8_t *bitmap)


这里,5个参数之间的关系如下图所示:


简单来说,这个函数就是把 bitmap 指针所指向的“连续存储区域” 中保存的像素信息拷贝到LCD的一个指定矩形区域内,这一矩形区域由位置信息x,y和体积信息(widthheight)共同确定。

很多LCD都支持一个叫做“操作窗口”的概念,这里的窗口其实就是上图中的矩形区域——一旦你通过指令设置好了窗口,随后连续写入的像素就会被依次自动填充到指定的矩形区域内(而无需用户去考虑何时进行折行的问题)。

此外,如果你有幸使用带LCD控制器的芯片——LCD的显示缓冲区被直接映射到Cortex-M芯片的4GB地址空间中,则我们可以使用简单的存储器读写操作来实现上述函数,以STM32F746G-Discovery开发板为例:

//! STM32F746G-Discovery#define GLCD_WIDTH     480#define GLCD_HEIGHT    272
#define LCD_DB_ADDR 0xC0000000#define LCD_DB_PTR ((volatile uint16_t *)LCD_DB_ADDR)
int32_t GLCD_DrawBitmap (uint32_t x, uint32_t y, uint32_t width, uint32_t height, const uint8_t *bitmap) {    volatile uint16_t *phwDes = LCD_DB_PTR + y * GLCD_WIDTH + x; const uint16_t *phwSrc = (const uint16_t *)bitmap; for (int_fast16_t i = 0; i < height; i++) { memcpy ((uint16_t *)phwDes, phwSrc, width * 2); phwSrc += width; phwDes += GLCD_WIDTH; }
    return 0;}



7、在 main.c 中加入对 lv_port_disp_template.h 的引用:

#include "lv_port_disp_template.h"


8、在main()函数中对LVGL进行初始化:

int main(void){    ...    lv_init();    lv_port_disp_init();    ...    while(1) {            }   }

至此,我们就完成了LVGL在MDK工程的部署。是不是特别简单?



【时间相关的移植】


根据官方移植文档的要求,我们实际上还需要处理两个问题:
  • 让 lvgl 知道从复位开始经历了多少毫秒

  • 以差不多5ms为间隔,调用函数 lv_timer_handler() 来进行事件处理(包括刷新)


依据平台的不同,小伙伴们当然有自己的解决方案。这里,我推荐一个MDK环境下基于perf_counter的方案,它更通用,也更简单。关于它的使用文章,小伙伴可以参考《【喂到嘴边了的模块】超级嵌入式系统“性能/时间”工具箱》,这里就不再赘述。

步骤一:获取 perf_counter 的cmsis-pack

关注公众号【裸机思维】后,向后台发送关键字“perf_counter” 获取对应的cmsis-pack网盘链接。下载后安装。


步骤二:在工程中部署 perf_counter

打开RTE配置窗口,找到 Utilities 后展开,选中 perf_counter的 Core:

需要说明的是,无论你用不用操作系统,这里关于各类操作系统的 Patch 你即便不选择也能正常工作,不必担心。单击OK后即完成了部署。

在main()函数中初始化 perf_counter(别忘记添加对头文件 perf_counter.h 的包含):
#include "perf_counter.h"
int main(void){    /* 配置 MCU 的系统时钟频率 */        /* 重要:更新 SystemCoreClock 变量 */    SystemCoreClockUpdate();         /* 初始化 perf_counter */    init_cycle_counter(true);    ...    while(1) {    }    ...}

需要特别说明的是:

  • 调用 init_cycle_counter() 之前,最好通过 SystemCoreClockUpdate() 来将当前的系统频率更新到关键全局变量 SystemCoreClock 上。你当然也可以自己用赋值语句来做,比如:

extern uint32_t SystemCoreClock;    SystemCoreClock = 72000000ul;  /* 72MHz */
  • 如果你已经有应用或者RTOS占用了SysTick(一般都是这样),则应该将 true 传递给 init_cycle_counter() 作为参数——告诉 perf_counter SysTick已经被占用了;反之则应该传递 false,此时 perf_counter 会用最大值 0x00FFFFFF来初始化SysTick。



步骤三:更新超级循环

最新版本的LVGL为用户提供了一个全新的方式来周期性的刷新 LVGL任务函数:lv_timer_handler_run_in_period(毫秒数)。无论是裸机还是RTOS环境,你都可以简单的将其插入超级循环中——以指定的ms数为间隔刷新LVGL的任务函数,例如:

int main(void){    ...    lv_init();    lv_port_disp_init();    lv_port_indev_init();    ...    while(1) {        lv_timer_handler_run_in_period(LV_DISP_DEF_REFR_PERIOD);    }    }



【跑分从未如此简单】


完成移植后,也许你会急于想知道当前环境下自己的平台能跑出怎样的帧率吧?别着急,LVGLcmsis-pack已经为您好了准备。打开RTE配置窗口,勾选benchmark


在 main.c 中加入对 lv_demo_benchmark.h 的“间接”引用:

#include "demos/lv_demos.h"

在 LVGL 初始化代码后,加入benchmark 无脑入口函数:

int main(void){    lv_init();    lv_port_disp_init();    #if LV_USE_DEMO_BENCHMARK    lv_demo_benchmark();#endif        while(1) {        lv_timer_handler_run_in_period(5);    }    }

编译,运行,走起:



嗯…… Slow but common case……




最新的 benchmark 允许我们通过lv_demo_benchmark_set_finished_cb()注册一个回调函数——用于告知我们所有测试已经完成:

static void on_benchmark_finished(void){    }
int main(void){ lv_init(); lv_port_disp_init();    lv_port_indev_init(); lv_demo_benchmark_set_finished_cb(&on_benchmark_finished); lv_demo_benchmark(); //lv_demo_benchmark_set_max_speed(true);     //lv_demo_benchmark_run_scene(43);      // run scene no 31
while(1) { lv_timer_handler();    }}

如果我们对具体某一个测试场景感兴趣,还可以在注释掉 lv_demo_benchmark()后通过函数 lv_demo_benchmark_run_scene() 来运行指定编号的场景。


【装逼从未如此简单】


完成移植后,也许你“”会急于想知道当前环境下自己的平台能跑出怎样的效果吧?(咦?为什么要说又?)别着急,LVGLcmsis-pack已经为您好了准备。打开RTE配置窗口,勾选 Demo:Widgets


在 main.c 中加入对 lv_demo_widgets.h 的“间接”引用:

#include "demos/lv_demos.h"

在 LVGL 初始化代码后,加入 Demo Widgets 的无脑入口函数:

int main(void){
lv_init(); lv_port_disp_init(); #if LV_USE_DEMO_BENCHMARK lv_demo_benchmark();#endif #if LV_USE_DEMO_WIDGETS lv_demo_widgets();#endif
while(1) { lv_timer_handler_run_in_period(5); } }


需要特别注意的是:要跑这个Demo,Stack(栈)不能小于 4K,切记,切记!


编译,运行,走起:




【说在后面的话】


最后,对在MDK中用cmsis-pack来部署LVGL的过程感到好奇,但又想有个参考的小伙伴,可以关注下面这个开源项目(也是我负责维护的):

https://github.com/lvgl/lv_port_an547_cm55_sim

按照readme的教程,你甚至不需要硬件就可以在MDK中免费模拟一个Arm开发板来跑LVGL。加之最近MDK为非商业应用场景提供了几乎没有什么限制的社区版,大家已经可以挺直腰板白嫖MDK啦。

此外,如果你是Raspberry Pi Pico的爱好者,还可以参考这个官方仓库(“又”是我维护的哦):


https://github.com/lvgl/lv_port_raspberry_pi_pico_mdk


如果他对你有所帮助的话,还请赏赐个Star呀。




原创不易,

如果你喜欢我的思维、觉得我的文章对你有所启发,

请务必 “点赞、收藏、转发” 三连,这对我很重要!谢谢!


小飞哥玩嵌入式 分享嵌入式开发相关知识,喜欢DIY分享
评论 (0)
  •   陆地装备体系论证与评估综合平台系统解析   北京华盛恒辉陆地装备体系论证与评估综合平台系统是契合现代军事需求而生的专业系统,借助科学化、智能化手段,实现对陆地装备体系的全方位论证与评估,为军事决策和装备发展提供关键支撑。以下从功能、技术、应用及展望展开分析。   应用案例   目前,已有多个陆地装备体系论证与评估综合平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地装备体系论证与评估综合平台。这些成功案例为陆地装备体系论证与评估综合平台的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-24 10:53 125浏览
  • 为通过金融手段积极推进全球绿色发展,国际金融论坛(IFF)于2020年创立了“IFF全球绿色金融奖”,旨在对全球绿色金融领域取得突出成绩的机构及创新性的解决方案进行表彰和奖励。该奖项依托IFF“高层次、高水平、国际化”一流智库资源优势,积极促进绿色金融领域的国际交流合作和创新实践,助力联合国可持续发展目标的实现。“IFF全球绿色金融奖”重点关注和鼓励那些促进经济增长模式转型、防治环境污染、应对气候变化,以及致力于提高能效水平、强化节能减排实效的绿色金融创新解决方案。该奖项面向全球,是对政策创新、
    华尔街科技眼 2025-04-24 20:43 18浏览
  •   航空兵训练与战术对抗仿真平台系统解析   北京华盛恒辉航空兵训练与战术对抗仿真平台系统是现代军事训练的关键工具,借助计算机技术构建虚拟战场,支持多兵种协同作战模拟,为军事决策、训练及装备研发提供科学依据。   应用案例   目前,已有多个航空兵训练与战术对抗仿真平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润航空兵训练与战术对抗仿真平台。这些成功案例为航空兵训练与战术对抗仿真平台的推广和应用提供了有力支持。   一、系统架构与核心功能   系统由模拟器、计算机兵力生
    华盛恒辉l58ll334744 2025-04-24 16:34 144浏览
  •   海上训练与保障调度指挥平台系统解析   北京华盛恒辉海上训练与保障调度指挥平台系统是现代海上作战训练的核心枢纽,融合信息技术、GIS、大数据及 AI 等前沿技术,旨在实现海上训练高效组织、作战保障科学决策。以下从架构功能、应用场景、系统优势及发展挑战展开解读。   应用案例   目前,已有多个海上训练与保障调度指挥平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上训练与保障调度指挥平台。这些成功案例为海上训练与保障调度指挥平台的推广和应用提供了有力支持。   一
    华盛恒辉l58ll334744 2025-04-24 15:26 130浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 212浏览
  •   有效样本分析决策系统平台全面解析   一、引言   北京华盛恒辉有效样本分析决策系统在当今数据驱动的时代,企业、科研机构等面临着海量数据的处理与分析挑战。有效样本分析决策系统平台应运而生,它通过对样本数据的精准分析,为决策提供有力支持,成为提升决策质量和效率的关键工具。   应用案例   目前,已有多个有效样本分析决策系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效样本分析决策系统。这些成功案例为有效样本分析决策系统的推广和应用提供了有力支持。   二、平台概述
    华盛恒辉l58ll334744 2025-04-24 11:13 114浏览
  • 最近,途虎养车发布的2024年财报数据,可谓相当吸睛。全年营收达到147.59亿元,同比增长8.5%,这个数字直观地展现了途虎在市场上的强大吸金能力,在行业里稳稳占据前列。利润方面同样出色,毛利37.46亿元,毛利率提升0.7个百分点至25.4%;经调整净利润6.24亿元,同比增长 29.7%,经营利润同比更是增长104%至3.31亿元,盈利能力显著增强,这样的利润增长幅度,在同行业中十分亮眼。在用户规模上,途虎养车同样成绩斐然。累计注册用户近1.4亿,同比增长20.4%,交易用户数达2410万
    用户1742991715177 2025-04-24 19:12 31浏览
  • 引言在智能语音技术飞速发展的今天,语音交互已成为消费电子、智能家居、工业控制等领域的标配功能。传统的ISD系列录音芯片虽应用广泛,但其高成本与功能局限性逐渐难以满足市场对高性价比、高灵活性的需求。推出的WT2000P录音语音芯片,凭借其卓越性能、低功耗设计及高度可定制化特性,成为ISD系列芯片的理想替代方案,助力开发者突破产品创新瓶颈。一、WT2000P产品概述WT2000P是一款专为嵌入式语音场景设计的多功能录音芯片,采用ESOP8封装,体积小巧(尺寸仅4.9mm×3.9mm),集成度高,支持
    广州唯创电子 2025-04-25 08:44 24浏览
  • 2025-4-25全球信息报告出版商Global Info Research(环洋市场咨询)发布了【2025年全球市场高介电常数材料总体规模、主要生产商、主要地区、产品和应用细分研究报告】,报告主要调研全球高介电常数材料总体规模、主要地区规模、主要生产商规模和份额、产品分类规模、下游主要应用规模以及未来发展前景预测。统计维度包括销量、价格、收入,和市场份额。同时也重点分析全球市场主要厂商(品牌)产品特点、产品规格、价格、销量、销售收入及发展动态。历史数据为2020至2024年,预测数据为2025
    用户1745398400862 2025-04-25 08:48 35浏览
  • 随着轻薄笔记本的普及,再加上电竞玩家对于高画质音视频体验的需求日益高涨,如何让轻薄笔记本在兼顾轻便携带性的同时,还能提供足以支持3A(AAA/Triple-A game)大作的良好运算性能,便成为各家品牌急欲突破的共同难题。然而,对于主打轻巧便携的轻薄笔记本而言,若要内置独立显卡,势必要先突破空间受限的瓶颈,同时还需解决散热问题,确实难以兼顾两全!对此,“Thunderbolt”与“OCuLink”这两项技术应运而生。用户可以通过这两种传输接口,再搭配外接显卡盒(eGPU)及高性能显卡(如NVI
    百佳泰测试实验室 2025-04-24 17:56 30浏览
  •   高海拔区域勤务与装备保障调度系统平台解析   北京华盛恒辉高海拔区域勤务与装备保障调度系统平台专为高海拔特殊地理环境打造,致力于攻克装备适应、人员健康保障、物资运输及应急响应等难题。以下从核心功能、技术特点、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个高海拔区域勤务与装备保障调度系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润高海拔区域勤务与装备保障调度系统。这些成功案例为高海拔区域勤务与装备保障调度系统的推广和应用提供了有力支持。   一、核心
    华盛恒辉l58ll334744 2025-04-24 10:13 116浏览
  •   通用装备论证与评估系统平台解析   北京华盛恒辉通用装备论证与评估系统平台是服务军事装备全生命周期管理的综合性信息化平台,通过科学化、系统化手段,实现装备需求论证、效能分析等核心功能,提升装备建设效益。   应用案例   目前,已有多个通用装备论证与评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润通用装备论证与评估系统。这些成功案例为通用装备论证与评估系统的推广和应用提供了有力支持。   一、系统分层架构   (一)数据层   整合装备性能、作战、试验等多源异
    华盛恒辉l58ll334744 2025-04-24 16:14 133浏览
  • 引言:语音交互的智能化跃迁在全球化与智能化深度融合的今天,语音交互设备的应用场景已从单一提示功能向多语言支持、情感化表达及AI深度交互演进。传统离线语音方案受限于语种单一、存储容量不足等问题,而纯在线方案又依赖网络稳定性,难以满足复杂场景需求。WT3000A离在线TTS方案,通过“本地+云端”双引擎驱动,集成16国语种、7种方言切换、AI大模型对话扩展等创新功能,重新定义语音提示器的边界,为智能硬件开发者提供更灵活、更具竞争力的语音交互解决方案。一、方案核心亮点离在线双模融合,场景全覆盖离线模式
    广州唯创电子 2025-04-25 09:14 32浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦