RF设计基础:驻波比、回波损耗和失配损耗

原创 EETOP 2023-02-07 12:05

第一期进入实操阶段!“版图就业&提升班” 第二期开启报名
小班线上授课、线下实训!

了解电压驻波比 (VSWR)、回波损耗和失配损耗,这有助于表征射频 (RF) 设计中的波反射。
当电波在其中传播过程中,遇到的介质的阻抗发生变化时会产生反射。当我们打算将功率从信号链中的一个模块传输到下一个模块时,这些反射是非常不希望的。
在本文中,我们将了解两个参数,即驻波比和回波损耗,它们使我们能够表征RF设计中的波反射。我们还将讨论参数化波反射对功率传输的影响的“失配损耗”规范。

计算 VSWR 公式

对于短路或开路的传输线,会发生全反射,入射波和反射波的干扰会在传输线上产生驻波。例如图 1 所示。

图 1. 示例图。
对于正弦输入,稳态响应也是正弦的。长度为 d = 0.2 米且负载短路 (ZL= 0),36个不同时刻沿线路的电压波如图2所示。

图 2.  36个不同实例的电压波形。
上面的曲线可以让您了解电压波的幅度如何沿线路变化。这种幅度变化最好通过上述图的包络线来显示,如下图3所示。

图 3. 振幅变化图。
请注意,包络线的最小值为零伏。我们可以对任意负载重复相同的过程,比如 Γ = 0.5 的负载。这种情况下 36 个不同时刻的电压波形图如图 4 所示。 

图 4.另一个示例图显示了 36 个实例的电压波形。 
这些曲线的包络如图 5 所示。

图 5. 示例电压波包络与位置图。 
上面的讨论表明,当发生全反射时,包络的最小值为零伏Vmin = 0(图 3)。然而,对于部分反射,Vmin更接近峰值Vmax。在没有反射的理想情况下,Vmax 实际上等于 Vmax。因此,VmaxVmin之比(称为VSWR)与阻抗不连续处发生的反射量有关。在数学语言中,VSWR 定义为:

全反射时,驻波比为无穷大;对于匹配负载,VSWR 为 1;对于其他情况,VSWR 介于这两个极值之间。例如,对于图 5 中的包络波形,VSWR为:
可以很容易地看出,VSWR 与负载反射系数Γ 的关系由下式表示:

这个等式允许我们测量 VSWR 并使用该信息来确定反射系数的大小。
附带说明一下,VSWR 参数可能在某种程度上失去了它曾经具有的意义。当今的高性能定向耦合器可以物理分离入射波和反射波,使我们能够精确测量反射系数。
在传输线测量的早期,这些高性能定向耦合器是不可用的,公式2是测量Γ幅度的简单解决方案。为此,工程师只需要通过称为开槽线路的设备测量沿线路的最小和最大电压。考虑到当今高性能测量设备的可用性,VSWR有时被认为是几十年前遗留的参数。但是,RF工程师需要完全理解VSWR概念,因为它仍然通常在数据表中指定。 

射频回波损耗

考虑图 6,其中传输线连接到 RF 组件的输入。入射功率为 Pi, 并且“观察”RF组件输入的反射系数Γ。 

图 6.  RF 组件和传输线 
在这里,我们感兴趣的是表征有多少入射功率从 RF 组件 (Pr)反射。而反射系数Γ是反射电压与入射电压之比,|Γ|2表示反射功率与入射功率之比:
 
用分贝表示上述等式会产生: 

例如,如果|Γ|2=0.1,我们得到:

这意味着反射功率比入射功率低10 dB。在这种情况下,我们可以说返回的入射信号部分经历了-10 dB的增益,或者等效地损失了+10 dB。换句话说,本例中的“回波损耗”为10 dB。
或者,回波损耗参数通常用于表示公式3和4。但是,此参数的名称起初可能有点令人困惑。回波损耗是指入射信号在从阻抗不连续性返回或反射时所经历的损耗。
请注意,对于无源电路,Γ的边界介于 0 和 1 之间,因此,返回的信号会经历衰减或损耗而不是增益。回波损耗通常用RL表示,由下式给出:

例如,如果系统中的回波损耗指定为40 dB,您会立即知道反射功率比入射功率低40 dB。因此,回波损耗越大,负载与线路特性阻抗之间的匹配越好。
Γ、VSWR和回波损耗这三个参数都是指定负载与传输线匹配程度的不同方法。但是,与同时具有幅度和相位信息的Γ不同,VSWR和回波损耗仅提供幅度,没有相位信息。

失配损耗

让我们再检查一次图 6 中的配置。除了反射功率之外,我们还对表征阻抗失配对传输到输出P的功率量的影响感兴趣。首先,假设RF分量的功率增益是单位(G = 1)。换句话说,传递到RF组件输入端的相同功率出现在其输出端。由于阻抗失配会导致一些反射功率,因此会降低传递到RF组件的功率。G = 1时,输出功率Po等于入射功率和反射功率之差:

以分贝表示上述等式可得出:

继续使用示例值0.1

这意味着输出功率比入射功率低0.46 dB。换句话说,信号的增益为-0.46 dB,或者等效地损失为+0.46 dB。这种功率损耗被称为“失配损耗”,因为它仅源于阻抗失配。失配损耗参数告诉我们通过提供完美的阻抗匹配可以获得多少增益改进。在上述示例中,可获得的增益改进为0.46 dB。基于上述讨论,用ML表示的失配损耗由以下等式给出:

从上面的解释中可以清楚地看出,小的失配损耗是需要的,并且对应于负载和线路之间更好的匹配。

两个端口不匹配时的失配损耗

在图 6 中,我们隐含地假设信号源(未显示)的阻抗与线路特性阻抗匹配。如果不是这种情况,Pr 将重新反射源端的不连续性并影响入射波Pi。例如,当我们通过传输线将源连接到负载时(图 7(a))以及两个级联设备之间的接口(图 7(b)),就会遇到这种情况。 

图 7. 源通过传输线 (a) 和两个级联设备之间的接口 (b) 连接到负载的示例图。
在这种情况下,失配损耗(以线性项而不是分贝表示)由等式 8 给出。

上式指定了由于波反射而在输入和输出端口之间来回反弹的输入功率部分。您可以在G. Gonzalez的“微波晶体管放大器”第 2 章中找到该方程式的推导。例如,假设图7(a)中的Γ1 Γ2 分别为0.1和0.2。在这种情况下,我们有 ML = 1.011 的不匹配损失。以 dB 表示,由于两个阻抗不连续,我们有 0.05 dB 的损耗。 
请注意,Γ 具有幅度和相位信息,并且相位角会影响等式 8 生成的 ML 值。让我们重复上面的示例,其中 Γ1   = 0.1 和 Γ 2  = -0.2。在这种情况下,ML 计算为1.095 或 0.39 dB。 

失配不确定度

上述示例突出了 RF 应用中的严峻挑战。由于等式 8 中的失配损耗取决于反射系数的相位角,并且注意到在许多实际情况下,只有反射系数的大小是已知的,因此对于实际从输入传输到输出的功率有多少存在一些不确定性. 例如,知道 |Γ1| = 0.1 和 |Γ2| = 0.2,失配损耗介于 0.05 dB 和 0.39 dB 之间。由这些上限和下限指定的范围称为失配不确定性。
推荐阅读

传输线理论:观察反射系数和驻波

原文

https://www.allaboutcircuits.com/technical-articles/radio-frequency-design-basics-voltage-standing-wave-ratio-return-loss-and-mismatch-loss
创新大讲堂芯片就业课75折返场中
本课程75折优惠随时取消

本课程75折优惠随时取消

EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 185浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 79浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 114浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 94浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 99浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 134浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 65浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 178浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦