RT-Smartriscv64汇编注释

RTThread物联网操作系统 2023-02-06 19:24

以rt-smart在全志D1上的代码为例,主要注释了rt-smart在riscv64上的系统初始化和异常处理的代码 仓库地址https://gitee.com/rtthread/rt-thread/tree/rt-smart

启动

代码路径

libcpu\risc-v\t-head\c906\startup_gcc.S

/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2018/10/01     Bernard      The first version
 * 2018/12/27     Jesven       Add SMP support
 * 2020/6/12      Xim          Port to QEMU and remove SMP support
 */


#define __ASSEMBLY__
#define SSTATUS_FS      0x00006000U /* initial state of FPU, clear to disable */
#include 

  .global _start
  .section ".start""ax"
_start:
  j 1f
  .word 0xdeadbeef
  .align 3
  .global g_wake_up
  g_wake_up:
      .dword 1
      .dword 0
1:
  csrw sie, 0  /*超级用户模式中断使能关闭*/
  csrw sip, 0  /*超级用户模式中断等待关闭*/
  la t0, trap_entry /*将trap_entry的地址放入t0寄存器*/
  csrw stvec, t0 /*配置异常服务程序的入口地址*/

  li x1, 0
  /*...........*/       /*初始化通用寄存器*/
  li x31,0

  /* set to disable FPU */
  li t0, SSTATUS_FS /*将FS的bit位写入t0寄存器*/
  csrc sstatus, t0  /*清除sstatus中的FS bit,关闭浮点单元*/
  li t0, 0x40000  /*当 SUM=1 时,超级用户模式下,加载、存储和取指令请求可以访问标记为用户态的虚拟内存空间*/
  csrs sstatus, t0 /*置位sstatus中的SUM位*/

.option push
.option norelax
  la gp, __global_pointer$
.option pop

  // removed SMP support here
  la   sp, __stack_start__  /*栈指针的值来自于链接脚本中的__stack_start*/
  li   t0, __STACKSIZE__ 
  add  sp, sp, t0   /*栈自上到下增长*/
  csrw sscratch, sp  /*sscratch存储栈顶的地址 */
  j primary_cpu_entry /*跳转到board中的C程序入口*/
//BSP的C入口
void primary_cpu_entry(void)
{
    extern void entry(void);

    //初始化BSS
    init_bss();
    //关中断
    rt_hw_interrupt_disable();
    rt_assert_set_hook(__rt_assert_handler);
    //启动RT-Thread Smart内核
    entry();
}

异常处理

异常处理流程图



异常处理上半部分

/*libcpu\risc-v\t-head\c906\interrupt_gcc.S*/

#define __ASSEMBLY__
#include "cpuport.h"
#include "encoding.h"
#include "stackframe.h"

  .section      .text.entry
  .align 2
  .global trap_entry
  .extern __stack_cpu0
  .extern get_current_thread_kernel_stack_top
trap_entry: /*异常处理函数的入口*/
    //backup sp
    csrrw sp, sscratch, sp /*将当前栈与sscratch做交换*/
    //load interrupt stack
    la sp, __stack_cpu0 /*sp指向cpu0的中断栈的栈顶*/
    //backup context
    SAVE_ALL /*CPU寄存器入栈,使能浮点的情况下浮点相关的寄存器也要入栈 并且要保存sstatus中浮点的运算状态*/
    
    RESTORE_SYS_GP /*gp操作不用了解*/

    //check syscall
    csrr t0, scause /*读取scaue到t0*/
    li t1, 8    //environment call from u-mode /*用户模式环境调用异常*/
    beq t0, t1, syscall_entry   /*如果是系统调用则跳转到系统调用处理函数,这个函数最终会调用sret*/

    csrr a0, scause /*读取scause到a0,机器模式异常事件向量寄存器(MCAUSE)用于保存触发异常的异常事件向量号,用于在异常服务程序中处理对应事件*/
    csrrc a1, stval, zero /*读取stval到a1,发生异常或者中断,且在机器模式响应时,处理器会更新 pc 到 MEPC,并根据异常类型更新 MTVAL*/
    csrr  a2, sepc /*读取sepc到a2, 超级用户模式异常保留程序计数器(SEPC)用于存储程序从异常服务程序退出时的程序计数器值(即
PC 值)*/

    mv    a3, sp  /*读取sp的值到a3*/

    /* scause, stval, sepc, sp */
    call  handle_trap  /*进行中断处理*/

中断处理

/*libcpu\risc-v\t-head\c906\trap.c*/
/* Trap entry */
void handle_trap(rt_size_t scause,rt_size_t stval,rt_size_t sepc,struct rt_hw_stack_frame *sp)
{
    /*
     SCAUSE
     bit63 Interrupt-中断标记位
     当 Interrupt 位为 0 时,表示触发异常的来源不是中断, Exception Code 按照异常解析。当 Interrupt 位为 1 时,表示触发异常的来源是中断, Exception Code 按照中断解析。该位会被 reset 置为 1’ b0。
     bit0~4 Exception Code-异常向量号位 
     在处理器响应异常或中断时,该域会被更新为对应异常号,具体请参考 表 3.9 异常和中断向量分
配。该位会被 reset 置为 5’ b0。
     */



    /*我理解这里是想获取Exception Code,但是Exception Code是bit0 ~ bit4,这里用__MASK(5UL)更合适吧*/
    rt_size_t id = __MASKVALUE(scause,__MASK(63UL));
    const char *msg;

    /* supervisor external interrupt */
    /*如果scause的bit63是1,scause的bit0~4是9超级用户模式外部中断*/
    if ((SCAUSE_INTERRUPT & scause) && SCAUSE_S_EXTERNAL_INTR == (scause & 0xff))
    {
        rt_interrupt_enter();
        plic_handle_irq();
        rt_interrupt_leave();
        return;
    } /*如果scause的bit63是1,scause的bit0~4是超级用户模式计时器中断*/
    else if ((SCAUSE_INTERRUPT | SCAUSE_S_TIMER_INTR) == scause)
    {
        /* supervisor timer */
        rt_interrupt_enter();
        tick_isr();
        rt_interrupt_leave();
        return;
    } /*其他中断*/
    else if (SCAUSE_INTERRUPT & scause)
    {
        if(id < sizeof(Interrupt_Name) / sizeof(const char *))
        {
            msg = Interrupt_Name[id];
        }
        else
        {
            msg = "Unknown Interrupt";
        }
        LOG_E("Unhandled Interrupt %ld:%s\n",id,msg);
    }
    else /*异常处理*/
    {
#ifdef RT_USING_USERSPACE
        /* page fault 缺页异常处理*/
        if (id == EP_LOAD_PAGE_FAULT ||
            id == EP_STORE_PAGE_FAULT)
        {
            arch_expand_user_stack((void *)stval);
            return;
        }
#endif  /*其他异常处理,走到这里后打印一些必要信息,最终会走到while(1),进入死循环*/
        if(id < sizeof(Exception_Name) / sizeof(const char *))
        {
            msg = Exception_Name[id];
        }
        else
        {
            msg = "Unknown Exception";
        }

        rt_kprintf("Unhandled Exception %ld:%s\n",id,msg);
    }

    rt_kprintf("scause:0x%p,stval:0x%p,sepc:0x%p\n",scause,stval,sepc);
    dump_regs(sp);
    while(1);
}

在rt-smart中任务切换有三个相关的线程函数

  • rt_hw_context_switch_to():没有来源线程,切换到目标线程,在调度器启动第一个线程的时候 被调用
  • rt_hw_context_switch():在线程环境下,从当前线程切换到目标线程
  • rt_hw_context_switch_interrupt ():在中断环境下,从当前线程切换到目标线程。

rt_hw_context_switch_interrupt ()会将rt_thread_switch_interrupt_flag置为1,真正的线程切换动作在异常处理函数中完成。

异常处理下半部分

    /* need to switch new thread  查询线程切换的flag是否被置位为1*/
    la    s0, rt_thread_switch_interrupt_flag /*读取rt_thread_switch_interrupt_flag*/
    lw    s2, 0(s0)
    beqz  s2, spurious_interrupt /*rt_thread_switch_interrupt_flag如果为0那么直接跳转到spurious_interrupt进行寄存器恢复,并调用sret回到异常之前的状态*/
    sw    zero, 0(s0) /*rt_thread_switch_interrupt_flag = 0*/

.global rt_hw_context_switch_interrupt_do
rt_hw_context_switch_interrupt_do:

//swap to thread kernel stack
    csrr t0, sstatus  /*读取sstatus到t0*/
    andi t0, t0, 0x100 /*bit8 超级用户模式保留特权状态位*/
    /*
     该位用于保存处理器在降级到超级用户模式进入异常服务程序前的特权状态。
     • 当 SPP 为 2’ b00 时,表示处理器进入异常服务程序前处于用户模式;
     • 当 SPP 为 2’ b01 时,表示处理器进入异常服务程序前处于超级用户模式;
     该位会被 reset 置 2’ b01。
    */

    beqz t0, __restore_sp_from_tcb_interrupt /*如果是内核态发生异常*/

__restore_sp_from_sscratch_interrupt:
    csrr t0, sscratch /*获取发生异常时的上下文数据*/
    j __move_stack_context_interrupt /*如果是用户态发生异常*/
    
/*获取当前线程的栈顶位置存到t0中*/
__restore_sp_from_tcb_interrupt:
    la    s0, rt_interrupt_from_thread
    LOAD  a0, 0(s0)
    jal rt_thread_sp_to_thread
    jal get_thread_kernel_stack_top
    mv t0, a0

__move_stack_context_interrupt:
    mv t1, sp//src /*当前栈,当前栈存储的是发生异常时的通用寄存器信息*/
    mv sp, t0//switch stack /* 将发生异常时的栈的值写回到sp寄存器 */
    addi sp, sp, -CTX_REG_NR * REGBYTES  /*栈指针向下移动CTX_REG_NR * REGBYTES*/
    //copy context
    li s0, CTX_REG_NR//cnt /*需要恢复的寄存器的个数加载到s0*/
    mv t2, sp//dst /*栈指针加载到t2*/
/*总结就是,当前CPU的中断栈存储了当前线程的通用寄存器的信息,如果发生任务切换,需要把这些信息拷贝到线程的栈里*/

copy_context_loop_interrupt:
    LOAD t0, 0(t1) /*t1的值放到t0*/
    STORE t0, 0(t2) /*t0的值放到t2*/
    addi s0, s0, -1 /*要恢复的寄存器个数-1*/
    addi t1, t1, 8 /*t1的地址加8*/
    addi t2, t2, 8 /*t2的地址加8*/
    bnez s0, copy_context_loop_interrupt /*如果s0不为0就重复拷贝*/

    la    s0, rt_interrupt_from_thread
    LOAD  s1, 0(s0)
    STORE sp, 0(s1)     /*更新from线程的sp指针*/

    la    s0, rt_interrupt_to_thread
    LOAD  s1, 0(s0)
    LOAD  sp, 0(s1)     /*恢复to线程的sp*/

    #ifdef RT_USING_USERSPACE
        mv a0, s1
        jal rt_thread_sp_to_thread
        jal lwp_mmu_switch /*切换mmu,函数内部会判断from线程和to线程是不是在同一个lwp中,不是的话就会切换MMU*/
    #endif

spurious_interrupt:
    RESTORE_ALL /*恢复寄存器*/
    sret /*超级用户模式异常返回指令*/

———————End———————


你可以添加微信:rtthread2020 为好友,注明:公司+姓名,拉进RT-Thread官方微信交流群!



爱我就给我点在看

👇点击阅读原文

RTThread物联网操作系统 帮助您了解RT-Thread相关的资讯.
评论 (0)
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 65浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 412浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 276浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 424浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 63浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 115浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 188浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 434浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 296浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 350浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 282浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 106浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 115浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 27浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 527浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦