传输线理论:观察反射系数和驻波

原创 EETOP 2023-02-01 12:38

第一期进入实操阶段!“版图就业&提升班” 第二期开启报名
小班线上授课、线下实训!

自然界中各种类型的波的行为从根本上说是相同的。就像声音在悬崖峭壁上的回声一样,电波在遇到它们所处介质的阻抗变化时也会发生反射。波的反射可以导致一个有趣的现象,即驻波。驻波对于大多数乐器发声的方式来说是必不可少的。例如,如果没有驻波的可预测性和放大效应,弦乐器就无法发挥作用。

然而,在 RF 设计中,当我们旨在将功率从信号链中的一个模块传输到下一个模块时,驻波是不可取的。事实上,驻波会影响不同射频和微波系统的性能,从电波消声室到微波炉等日常电器。

虽然波的传播和反射的概念并不十分复杂,但一开始可能有点令人困惑。要直观地了解波是如何在不连续的地方传播和反射的,最好的方法是绘制不同配置的波动方程。

在本文中,我们将首先推导所需的方程式,并使用它们通过几个示例波形来解释驻波现象。

传输线电压和电流波动方程

首先,让我们推导出我们的方程。我知道这很无聊,但它们确实有助于我们理解波是如何在传输线上传播和相互作用的。在本系列的前一篇文章中,我们研究了传输线的正弦稳态响应,并得出电压和电流方程。将v s (t) = V s cos(ωt) 应用于一条线路,则电压波和电流波为:

其中:
  • A和B是常数,可以从线路的输入和输出端口的边界条件中找到。

  • Z 0 是特性阻抗

  • β 是相位常数

这些方程对应于图1(a)所示的配置,其中X轴的正方向被选择为从源头到负载。如果我们用相位来表示这些波,则向前传播(或入射)波和向后传播(或反射)的电压波将分别为 Ae-jβx  和 Bejβx如图 1(a) 所示。


图 1. 显示正轴方向的图是从源到负载 (a) 然后从负载到源 (b)。
对于传输线问题,通常选择负载到源的正轴方向更方便,如图1(b)所示。为了找到新的方程,我们需要用 ld 替换原始方程中的 x。如新变量 d 所示,向前行进的波变为:
其中 A = Ae-jβx 是一个新常数。从这里,您可以验证,在新的坐标系中,反射波是 B1e-jβd其中 B1= Bejβx因此,总电压和电流相量如公式1 和 2 所示。
这些方程可以更容易地检查负载对波反射的影响,因为在这种情况下,负载位于 d = 0,从而简化了方程。设 d = 0,在负载端得到以下方程,如方程 3 和 4 所示。
例如,让我们考虑线路在开路中终止的情况。输出开路 ( ZL = ∞),输出电流显然为零。根据等式 4,我们有 A1  = B1 , 因此,总电压为V(d = 0) = 2A1

因此,对于开路线路,反射电压等于输出端的入射电压,此时的总电压是入射电压的两倍。同样,我们可以使用公式 3 和 4 来计算任意负载阻抗 ZL的反射波与入射波之比。这个比率是一个重要的参数,称为反射系数,我们很快就会谈到。 

输入阻抗和反射系数公式
使用等式 1 和 2,我们可以找到沿线不同点的电压与电流之比(即传输线的输入阻抗)。这就引出了公式5。
注意到线路负载端的线路阻抗 (d = 0) 等于负载阻抗ZL,我们得到:

使用一点代数,上面的等式给出了反射电压波与入射电压波的比率(B1 /A1 ),它在等式 6 中定义为反射系数 Γ。

上述讨论表明,对于终端线路,入射波和反射波之间存在一定的关系。注意,一般来说,反射系数是复数,Γ的幅度和相位信息都很重要。对于功率传输,我们尝试匹配负载 (ZL  = Z0 ),导致 Γ = 0。在这种情况下,施加到输入端的波完全被负载吸收,不会发生反射。在这里考虑另外两种特殊情况是有启发性的:一条开路线路和一条短路线路,我们将在稍后讨论。

虽然波传播和反射的概念基本上并不复杂,但一开始可能会让人感到困惑。可视化波如何传播和从不连续处反射的最佳方法是绘制我们在上面推出的方程。此外,值得一提的是,有许多在线模拟器可以帮助您更好地理解波传播概念。

短路线路
接下来,让我们来看看短路线路。发生短路时,总输出电压应始终为零。此外,从公式6中,我们有Γ = -1。入射电压波由下式给出:
图 2 中的顶部曲线提供了该方程在三个不同时间点 t 1、t 2和 t 3 的曲线图, 其中 t 1  < t 2  < t 3。

图 2. 短路的正向电压(顶部)、反向电压(中间)和总电压(底部)的示例曲线。
上述曲线细分,其中:
  • 传输线长度0.2米
  • 负载在 d = 0
  • β 为 50 弧度/米
  • 信号频率为 2 GHz
请注意入射波如何随着时间的推移逐渐移向负载(在 d = 0 时)。上图中的中间曲线显示了远离负载的反射电压。反射电压方程为:

其中Γ设置为 -1 以考虑短路。总电压是入射电压和反射电压之和,在下部曲线中给出。正向电压在沿线路的所有点(包括线路的负载端)在其最小值和最大值之间波动。但是,反射电压取与入射电压相反的值,因此负载端的总电压始终为零。
总电压波有一个有趣的特征:它静止不动,与其组成波不同,总电压波不向任一方向传播。例如,最大和零电压点不随时间移动。为了更好地说明这一点,图3绘制了36个不同时间点的总电压。

图 3. 显示 36 个不同时间点的总电压的图表。
可以看出,过零点(节点)和最大振幅的位置(腹点)是沿线的一些固定位置。由于波不向任一方向传播,因此称为驻波。
开路线路
对于开路线路 (ZL  = ∞),公式 6 得出 Γ = 1。在这种情况下,反射电压的幅度和相位等于入射电压。图 4 中的顶部和中间曲线分别显示了三个不同时间点开路线路上的入射和反射电压波。

图 4. 示例图显示了开路的正向电压(顶部)、反向电压(中间)和总电压(底部)。
请注意,入射波和反射波在 d = 0 时具有相同的值。因此,总电压(底部曲线)是负载端入射电压的两倍。由于 Γ = 1,反射电流 I r也与入射电流 I i 具有相同的幅度和相位。然而,负载端的总电流为 I- I= 0 ,这并不奇怪,因为负载是开路的。
此外,我们可以再次观察到总电压是一个驻波。这在图 5 中得到了最好的说明,它绘制了 36 个不同时间点的总电压波形。

图 5. 显示开路 36 个不同时间点的总电压波形的示例图。
计算端接线路的任意负载
接下来,让我们使用方程来检查 Γ = 0.5 的终止线。图 6 绘制了任意时间的入射和反射电压波。

图 6. 显示入射和反射电压波的绘图。
这两个波沿相反的方向传播。你应该可以想象,在某一时间点和沿线的某个特定位置,两个波的峰值会重合,产生总电压波的最大值。这在图 7 中进行了说明。

图 7. 示例图显示了入射波和反射波的峰值重合时总电压波的最大值。
此外,在其他某个时间点,沿线的特定位置将“看到”较大波的峰值和较小波的最小值,如图 8 所示。







图 8. 显示总电压波的示例图,其中入射波和反射波具有相反的波峰和波谷。 
在这些点上,总电压波的幅度处于最小值。在我们的示例中,前向波和反射波的振幅分别为 1 和 0.5。因此,总电压波的最小振幅为 1 - 0.5 = 0.5。为了更好地观察沿线不同点的电压幅度,图 9 绘制了 36 个不同实例的总电压波形。

图 9. 显示 36 个不同实例的总电压波形的示例图。
该图让您了解线上不同点的波动幅度。请注意,虽然 d = 0.1881 m 等点在 ±1.5 V 之间波动,但还有其他点。例如,d = 0.1568 m,其振幅要小得多,在±0.5 V 之间波动。
您可能会问的一个问题是,总波是在移动还是静止不动?图 10 显示了一些连续时间点 (t 1  < t 2  < ...< t 6 ) 的较少数量的总电压图来回答这个问题。   
图 10. 显示连续时间点较少总电压图的示例。 

该图显示,随着时间的推移,波向负载传播。请注意,虽然入射波和反射波的幅度是恒定的,但组合电压的幅度会随时间上升和下降。

入射波、反射波和驻波总结
让我们总结一下我们的观察结果:
  • 在匹配负载下,入射波向负载传播,并且没有反射。在这种情况下,波沿线具有恒定的振幅。
  • 对于短路和开路线路,入射波完全反射(Γ = -1或1)。在这种情况下,组合电压不沿任一方向传播,称为驻波。
  • 对于驻波,我们在沿线的固定位置有节点和腹点。节点根本不波动,而腹点以最大振幅波动。
  • 对于上述三种情况以外的载荷,我们有一个随时间上升和下降的行波(虽然它实际上是一个行波,但我们仍然可以偶尔将这种波称为驻波)。在这种情况下,我们没有任何节点,但某些点的振幅比其他点小。这种情况介于无反射的理想情况 (Γ = 0) 和全反射的最坏情况 (Γ = ±1) 之间。
因此,考虑到所有这些,我们必须知道我们的传输线在这个频谱的哪个点上运行。参数VSWR(电压驻波比)定义为波的最大振幅与其最小振幅的比值,使我们能够表征我们离驻波有多近。当有全反射时,驻波比是无限的;对于匹配的负载,驻波比为 1。
至于其他情况,VSWR介于这两个极值之间。VSWR为我们提供了一种表征反射量的替代方法。这将在下一篇文章中更详细地讨论。
原文
https://www.allaboutcircuits.com/technical-articles/rf-transmission-line-theory-reflection-coefficient-and-standing-waves
创新大讲堂芯片就业课推荐
本课程75折优惠继续有效,随时取消

本课程75折优惠继续有效,随时取消


EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重建的关键突破。一、3DGS技术概述与原理1、3DGS的技术概述3DGS是一种基于3D高斯分布的三维场景表示方法。通过将场景中的对象转化为多个3D高斯点,每个点包含位置、协方差矩阵和不透明度等信息,3DGS能够精确地表达复杂场景的几何形状和光照特性。与传统的神经辐射场(NeRF)方法相比,
    康谋 2025-03-06 13:17 120浏览
  • 1. 背景在汽车电子系统测试中,CANoe作为主流的仿真测试工具,常需与云端服务器、第三方软件或物联网设备进行交互。随着CANoe与外部软件、服务器或设备交互越来越多,直接使用Socket进行通信往往不能满足使用需求,依托于CANoe 的连接功能集(Connectivity Feature Set),以及Distributed Object(DO)功能,可以仿真HTTP节点,实现设备与服务器等之间的通信,保证数据处理的可靠性和便捷性。本文详细解析如何利用CANoe搭建HTTP测试环境,并提供典型
    北汇信息 2025-03-05 11:56 86浏览
  • 产品质量合格率偏低会引起质量成本(也称“劣质成本”)的大幅增加。质量成本通常分为内部损失成本和外部损失成本两部分。内部损失成本是指产品交付前因质量不合格造成的损失,包括返工、报废等;外部损失成本是指产品交付后因质量问题导致的损失,如退货、召回等。此外,质量问题还会影响生产效率,带来额外人工和停工损失。下面分别介绍各类损失的具体计算方法和公式。直接成本损失(内部故障成本)直接成本是由于产品在出厂前质量不合格所造成的看得见的损失。常见的直接损失包括返工、报废以及由此产生的额外原材料消耗等。返工成本:
    优思学院 2025-03-05 15:25 77浏览
  • 在六西格玛项目中,团队的选择往往决定了最终的成败。合适的团队成员不仅能推动项目顺利进行,更能确保最终成果符合预期。因此,组建六西格玛团队时,必须挑选最合适的人才,确保他们具备必要的能力和特质。团队主管的关键特质每个精益六西格玛项目都需要一位主管来带领团队。他们不仅需要具备领导力,还要能够分析数据、制定策略,并与管理层和团队成员高效沟通。团队主管的核心职责包括:领导团队行动:能够激励成员,确保团队朝着既定目标前进。数据分析能力:精通数据处理和分析,能基于数据做出决策。沟通协调:能够在管理层和团队之
    优思学院 2025-03-06 12:51 97浏览
  • 文/Leon编辑/cc孙聪颖2025年全国两会进行时,作为“十四五”规划收官之年,本届两会释放出坚定目标、稳中求进、以进促稳等信号。其中,企业家们的建议备受关注,关系到民营经济在2025年的走向。作为国内科技制造业的“老兵”,全国人大代表、TCL集团创始人及董事长李东生在本届两会中提出三份代表建议,包括《关于优化中国科技制造业融资环境的建议》、《关于加强AI深度伪造欺诈管理的建议》和《关于降低灵活就业人员社会保险参保门槛的建议》,表现出对科技制造、AI发展和劳动者保障方面的关注。会后,李东生接受
    华尔街科技眼 2025-03-06 19:41 36浏览
  • 概述随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。此次项目的客户需要在现有工厂基础上进行改造,空间有限。为此,客户选择了SCARA型线性轴机器人作为执行设备。然而,SCARA机器人的高效运行离不开强大的控制系统支持。宏集凭借其先进的智能控制系统,为客户提供了高效、灵活的自动化解决方案,确保SCARA机器人在有限空间内发挥最大效能。一、客户需求在此次改造项目中,
    宏集科技 2025-03-06 11:27 120浏览
  • 引言嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些高科技玩意儿协同工作,稳定可靠地运转,那就得靠一些幕后英雄,比如说——电容器。你可能会想,电容器?这不就是电子电路里常见的元件嘛,能有多重要? 哎,你可别小瞧了这小小的电容器。在电动汽车的心脏地带——高压直流转换器(DC-DC转换器)里,车规级的电容器那可是扮演着举足轻重的角色。 今天,咱们就聚焦分析三星电机车规
    贞光科技 2025-03-05 17:02 90浏览
  • ASL6328芯片支持高达 6.0 Gbps 运行速率的交流和直流耦合输入T-MDS 信号,具备可编程均衡和抖动清理功能。ASL6328 是一款单端口 HDMI/DVI 电平转换 / 中继器,具有重新定时功能。它包含 TypeC双模式 DP 线缆适配器寄存器,可用于识别线缆适配器的性能。抖动清理 PLL(锁相环)能够消除输入抖动,并完全重置系统抖动容限,因此能更好地满足更高数据速率下 HDMI 抖动合规性要求。设备的运行和配置可通过引脚设置或 I2C 总线实现。自动断电和静噪功能提供了灵活的电
    QQ1540182856 2025-03-06 14:26 85浏览
  • 多人同时共享相同无线网络,以下场景是否是您熟悉的日常?姐姐:「妈~我在房间在线上课,影音一直断断续续的怎么上课啊!」奶奶:「媳妇啊~我在在线追剧,影片一直卡卡的,实在让人生气!」除此之外,同时间有老公在跟客户开在线会议,还有弟弟在玩在线游戏,而妈妈自己其实也在客厅追剧,同时间加总起来,共有五个人同时使用这个网络!我们不论是在家里、咖啡厅、餐厅、商场或是公司,都会面临到周遭充斥着非常多的无线路由器(AP),若同时间每位使用者透过手机、平板或是笔电连接到相同的一个网络,可想而知网络上的壅塞及相互干扰
    百佳泰测试实验室 2025-03-06 16:50 36浏览
  • 服务器应用环境与客户需求PCIe 5.0高速接口技术的成熟驱动着生成式AI与高效能运算等相关应用蓬勃发展。在随着企业对服务器性能的要求日益严苛,服务器更新换代的周期也持续加快。在此背景下,白牌与DIY(Do It Yourself)服务器市场迎来了新的发展契机,但同时也面临着更趋复杂的技术挑战。传统上,白牌与DIY服务器以其高度客制化与成本效益优势受到市场青睐。然而,随着PCIe 5.0等高速技术的导入,服务器系统的复杂度大幅提升,对组装技术与组件兼容性也就提出更高的要求。举个简单的例子来说,P
    百佳泰测试实验室 2025-03-06 17:00 41浏览
  • 在当今竞争激烈的市场环境中,企业不仅需要优化成本,还需积极响应国家的能源政策,减少对环境的影响。提升工业能源效率正是实现这一双重目标的关键。中国近年来大力推进“双碳”目标(碳达峰、碳中和),并出台了一系列政策鼓励企业节能减排。通过宏集CODRA的Panorama解决方案,企业可以获得专为这一目标设计的SCADA工具,实时监控和调整所有工业设备的能耗。特别是其中的能源管理模块,能够有效分析数据,预防故障,避免能源浪费。Panorama的优化技术宏集CODRA提供的解决方案,尤其是Panorama
    宏集科技 2025-03-06 11:25 115浏览
  • 文/Leon编辑/侯煜‍2008至2021年间,创维以高举高打的凌厉之势,果断进行投资,一度成为中国市场大屏OLED产业的旗手,引领着显示技术的发展方向。但近年来,创维在 OLED 领域的发展轨迹却逐渐模糊,态度陷入暧昧不明的混沌状态。究其根源,一方面,创维对过往的押注难以割舍,在技术革新与市场变化的浪潮中,不愿轻易推翻曾经的战略布局;另一方面,早期在大屏OLED 技术研发、市场推广等环节投入的巨额资金,已然形成沉没成本,极大地限制了创维在显示技术路线上的重新抉择。但市场瞬息万变,为适应激烈的行
    华尔街科技眼 2025-03-05 20:03 147浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦