最近,美国国家标准与技术研究所(NIST)开发了一种“BreatheSmart”算法,该算法使用Wi-Fi信号来无线监测呼吸。NIST的科学家称,COVID-19大流行促使他们研发一种不需要复杂新硬件的监测呼吸健康的设备。
虽然NIST的BreatheSmart不是监测呼吸的唯一方法,但与其他方法相比,它确实有很大的优势。由于利用了Wi-Fi标准的信道状态信息,它可以单独部署在软件中,而不需要任何额外的硬件。
本文将研究BreatheSmart算法及其他一些无线呼吸监测方法,以确定其作为一种无创呼吸健康指标的优点和利弊。我们还将讨论NIST技术的未来,以评估如何将其集成到日常生活中。
合二为一
信道状态信息(CSI)有助于补偿部署Wi-Fi路由器的环境。CSI包括有关反射、衰减和由环境变化引起的路径长度变化的信息,将传输和接收到的信号规范化并适当地读出。
除了保护Wi-Fi信号的完整性,该功能还可以记录由生物运动引起的微小环境变化。人体呼吸会引起轻微的胸部运动,这将改变从发射器到接收器的信号路径,这些信息将被编码在Wi-Fi接入点的CSI中。使用适当的算法(如BreatheSmart),这些信息可用于确定呼吸频率并识别有问题的呼吸模式。
使用Wi-Fi监测呼吸
Wi-Fi硬件本身不足以检测到呼吸问题。为了识别和描述异常呼吸模式,CSI使用了深度学习模型。经过预处理、训练和测试后,可以将数据输入到深度学习模型中,以有效地表征所观察到的呼吸模式。
为了训练和测试模型,NIST使用了一个“RespiPro”人体模型。这个人体模型包括一个逼真的气道和可编程的呼吸,通常用于培训医疗专业人员。在这里,它被用于训练深度学习模型。
训练结束后,使用BreatheSmart算法和RespiPro人体模型进行的初步测试显示,识别人体模型呼吸模式的成功率为99.54%。当然,这种测量受到诸如每秒帧数和衰减等各种参数的影响,但仍然是使用现有硬件测量生物运动的初步成功测试。
不间断的健康监测
NIST的算法并不是监测呼吸的唯一方法。超宽带雷达、光学或电容传感等技术都提供了类似的探测小生理运动的能力,但每一种都需要权衡。与BreatheSmart相比,它们都需要额外的硬件才能正常工作。
虽然目前还没有一种适用于所有健康监测的解决方案,但BreatheSmart作为一种廉价、非侵入性的呼吸监测方法显示出前景。研究人员仍在开发和测试算法,以实现改进。例如,研究人员认为CSIR是一种比CSI更可靠的呼吸测量方法。
原文链接:
https://www.allaboutcircuits.com/news/nists-wi-fi-system-pinpoints-people-struggling-to-breathe/
高端微信群介绍 | |
创业投资群 | AI、IOT、芯片创始人、投资人、分析师、券商 |
闪存群 | 覆盖5000多位全球华人闪存、存储芯片精英 |
云计算群 | 全闪存、软件定义存储SDS、超融合等公有云和私有云讨论 |
AI芯片群 | 讨论AI芯片和GPU、FPGA、CPU异构计算 |
5G群 | 物联网、5G芯片讨论 |
第三代半导体群 | 氮化镓、碳化硅等化合物半导体讨论 |
存储芯片群 | DRAM、NAND、3D XPoint等各类存储介质和主控讨论 |
汽车电子群 | MCU、电源、传感器等汽车电子讨论 |
光电器件群 | 光通信、激光器、ToF、AR、VCSEL等光电器件讨论 |
渠道群 | 存储和芯片产品报价、行情、渠道、供应链 |
< 长按识别二维码添加好友 >
加入上述群聊
带你走进万物存储、万物智能、
万物互联信息革命新时代