一文弄懂二进制表示和补码计算的来龙去脉

嵌入式ARM 2023-01-30 13:19

本文目录:

  • 一、前言

  • 二、从十进制到二进制

    • 1. 十进制

    • 2. 二进制

    • 3. 十六进制

    • 4. 任意进制

  • 三、从十进制加法到二进制加法

    • 1. 十进制加法

    • 2. 二进制加法

    • 3. 十六进制加法

  • 四、把负数计算转换成正数计算

    • 1. 原码

    • 2. 把负数计算变成正数计算

    • 3. 新问题:如何表示0?

    • 4. 补码的计算:同余定理

  • 五、总结

一、前言

计算机最喜欢的数字就是 0 和 1,在 CPU 的世界中,它只认识这两个数字,即使是强大的操作系统,也都是由 0 和 1 组成的。

作为一名软件开发者,入门学习的内容可能就是认识这 2 个既简单、又强大的数字。但是大部分人,对于二进制、二进制计算、原码、反码以及补码的认识,仍处于机械的强制记忆阶段。尤其是对一些编码和计算,仍然处于模糊的认识阶段,例如:

  1. CPU 是如何表示负数的?

  2. 为什么补码可以用来表示负数?

  3. 一个 8 位的二进制数,最小值为什么是 -128,而不是 -127?

  4. CPU 中的加法器,为什么可以连同符号位一起运算?

这篇文章我们就来聊聊这个最最基础的内容,帮助你来理解二进制计算的相关内容,看完这篇文章之后,不仅知其然,更能知其所以然!

PS: 这里有点高调了,最终的所以然部分,应该涉及到数学证明这一层次了,本文并不会涉及到求证过程。

二、从十进制到二进制

1. 十进制

作为数学计算能力强大的中国,10 以内的加减法,应该是在幼儿园阶段就完成了。如果你不属于这个范围,说明你上的是假幼儿园。

我们来快速复习一下关于十进制运算的一些基本知识:

  1. 每一个数位上包括的数字为 0 到 9;

  2. 每一个数位上的数,是它右侧数位的 10 倍;

  3. 两个数相加时,相同数位上的数相加之和如果大于等于 10,就向前进 1 位,即:满十进一;

具体来看就是:

  1. 从右数第一个位数(个位)上的数字代表多少个 1;

  2. 从右数第二个位数(十位)上的数字代表多少个 10;

  3. 从右数第三个位数(百位)上的数字代表多少个 100;

  4. 从右数第四个位数(千位)上的数字代表多少个 1000;

十进制的数,可以使用后缀字母 D 来表示,也可以省略。例如:十进制的 1234 这个数字,个位上的数是 4, 十位上的数是 3, 百位上的数是 2,千位上的数是 1(一般是从最右侧的个位说起),每一个数位上的数比它右侧大十倍。如下图:

十进制数据,也称作基于十的表示法

2. 二进制

那么对于二进制呢?直接套用上面十进制的概念,然后把 10 换成 2 即可(目前先忽略符号位):

  1. 每一个数位上包括的数字为 0 和 1;

  2. 每一个数位上的数,是它右侧数位的 2 倍;

  3. 两个数相加时,相同数位上的数相加之和如果大于等于 2,就向前进 1 位,即:满二进一;

具体来看就是:

  1. 从右数第一个位数上的数字代表多少个 1;

  2. 从右数第二个位数上的数字代表多少个 2;

  3. 从右数第三个位数上的数字代表多少个 4;

  4. 从右数第四个位数上的数字代表多少个 8;

记住几个重点:二进制数中只包含 0 和 1 两个数字,在相加时满二进一

在十进制中,每一个数位我们给它进行了专门的命名(个位、十位、百位...),但是二进制没有类似的命名。

二进制的数,使用后缀字母 B 来表示,例如:二进制的 1111B 这个数字,用图来表示权重如下:

换算成十进制数就是 15(1 * 8 + 1 * 4 + 1 * 2 + 1 * 1 = 15)。

在二进制中,每一位称为一个比特(bit),如果用 8 个 bit 来表示一个二进制数,最小值是 0000_00000,最大值是 1111_1111;

如果用 16 个 bit 来表示一个二进制数,最小值是 0000_0000_0000_0000,最大值是 1111_1111_1111_1111。(为了便于观察,每 4 个 bit 之间,加上了分隔符)

在早期的计算机中,8 位的处理器很常见,于是就给它一个专门的名字:字节(Byte)。16 位的二进制数就是 2 个字节,也称作:字(Word)

3. 扩展到十六进制

原理还是相同的:直接把十进制中的 10 换成 16 即可:

  1. 每一个数位上包括的数字为 0 到 9,A 到 F;

  2. 每一个数位上的数,是它右侧数位的 16 倍;

  3. 两个数相加时,相同数位上的数相加之和如果大于等于 16,就向前进 1 位,即:满十六进一;

具体来看就是:

  1. 从右数第一个位数上的数字代表多少个 1;

  2. 从右数第二个位数上的数字代表多少个 16;

  3. 从右数第三个位数上的数字代表多少个 256;

  4. 从右数第四个位数上的数字代表多少个 4096;

在十六进制中,需要十六个数字来表示 0 到 15 这些数字,0 到 9 比较好处理,但是从 10 到 15,我们就需要找一些记号来表示,于是人们就想到用 A,B,C,D,E,F 这几个字母来分别表示 10 到 15 这个 6 个数字。

十六进制数据,使用后缀字母 H 来表示,有些场合也可以使用前缀 0x 来表示,本质上没有区别。例如:十六进制数字 1A2BH(或者写作 0x1A2B),每一个数位上的权重如图:

换算成十进制数就是 6699(1 * 4096 + 10 * 256 + 2 * 16 + 11 * 1 = 6699)。

4. 扩展到任意进制

原理仍然相同:直接把十进制中的 10 换成目标进制,例如 5 进制

  1. 每一个数位上包括的数字为 0 到 4;

  2. 每一个数位上的数,是它右侧数位的 5 倍;

  3. 两个数相加时,相同数位上的数相加之和如果大于等于 5,就向前进 1 位,即:满五进一;

具体来看就是:

  1. 从右数第一个位数上的数字代表多少个 1;

  2. 从右数第二个位数上的数字代表多少个 5;

  3. 从右数第三个位数上的数字代表多少个 25;

  4. 从右数第四个位数上的数字代表多少个 125;

再看一个图加深印象:

三、从十进制加法到二进制加法

1. 十进制加法

这个就不必多说了,规则只有 2 条:

  1. 两个数,相同数位上的数字进行相加;

  2. 每一个数位上的相加结果,满十进一;

例如:

个位上:4 + 8,结果是 12,但是十进制中没有 12 这个数字,因此向左侧的高位进1,个位就剩下:12 - 10 = 2。

十位上:7 + 2,再加上进位 1,结果是 10,但是十进制中没有 10 这个数字,因此向左侧的高位进1,十位变成:10 - 10 = 0。

百位上:1 加上进位 1,结果是 2。

2. 二进制加法

第 0 位:0 + 0 结果为 0;

第 1 位:1 + 0 结果为 1;

第 2 位:1 + 1 结果为 2,但是二进制中没有 2 这个数字,因此需要向左侧的高位进 1,于是第 2 位上就剩下 2 - 2 = 0。

第 3 位:1 + 1 等于 2,再加上进位 1,结果就是 3,但是二进制中没有 3 这个数字,因此需要向左侧的高位进 1,于是第 3 位上就剩下 3 - 2 = 1。

第 4,5,6,7位计算均是如此。

3. 十六进制加法

第 0 位:E + C,结果为 26,但是十六进制中没有 26 这个数字,因此需要向左侧的高位进 1,于是第 0 位就剩下 26 - 16 = A。

第 1 位:A + 1 等于 B,再加上进位 1,结果就是 C,十六机制中有这个数字

四、把负数计算转换成正数计算

1. 原码

原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。

例如,用 8 个 bit (8 位二进制数)来表示一个数,+11 的原码为 0000_1011,-11 的原码就是 1000_1011。

2. 把负数计算变成正数计算

我们都知道,CPU 中有加法器,好像从来没有听说过“减法器”。例如计算 5 + 8,转换成二进制来计算:

再来计算一下减法:5 - 8,对于 CPU 来说,只会计算 5 + 8, 但是不会计算 5 - 8。

但是可以转换一下思路,把减法变成加法 5 + (-8),这样不就可以计算了吗?于是计算机先驱者就发明了反码:

  1. 正数的反码:保持原码不变;

  2. 负数的反码:原码中符号位不变,其余全部取反(-8 的原码是 1000_1000,反码就是:1111_0111);

于是 5 + (-8)的计算过程就是:

此时,就完美解决了减法问题,那么乘法(多加几次)、除法(多减几次)问题也就跟着解决了。至于如何从数学的角度来证明,那就要问那些数学家了!

3. 新问题:如何表示0?

我们现在可以小结一下反码的表示范围(记住:第一位是符号位):

  1. 正数的表示范围:0000_0000 ~ 0111_1111,也就是十进制的 +0 ~ +127 这 128 个数;

  2. 负数的表示范围:1000_0000 ~ 1111_1111,也就是十进制的 -127 ~ -0 这 128 个数;

有没有发现问题:怎么存在 +0 和 -0 这两个数?而且他们的编码还不一样:+0 对应 0000_0000,-0 对应 1111_1111。

CPU 虽然就是一个傻瓜,让它干啥就干啥,但是 CPU 最不能容忍的就是不确定性!我们都知道 +0 == -0 == 0,它们是同一个数字,但是在二进制编码中,居然有两个编码来表示同一个数。

伟大的计算机先驱者又做了这样一个决定正数保持不变,负数整体减 1

也就是说:符号位不变,值整体加1,如下:

这样就成功解决了 -0、+0 的问题!

现在 一个 8 位的二进制就可以表示的范围是:-128 ~ 127,并且中间没有任何重复、遗漏的数字。

既然每一个二进制表示的值发生了变化,那么继续称之为反码不准确了,此时给它们一个新的称呼:补码,也就是说:上图就变成了这样:

小结一下补码的定义:

  1. 正数的补码:保持原码不变;

  2. 负数的补码:原码中符号位不变,其余先全部取反,然后再加1(例如:-8 的原码是 1000_1000,补码就是 1111_1000);

此时,我们仅仅是解决了二级制编码的表示问题,那么:补码能直接参与运算吗?运算结果会出现什么问题?

4. 补码的计算

我们先看一下这个问题:假设现在时间是 1 点整,但是你的手表进水了,它显示的是 3 点整,现在你怎么把时间调整到 1 点的位置?

方法1:把时针逆时针拨动 2 个小时(3 - 2 = 1);

方法2:把时针顺时针拨动 9 个小时到 12 点,然后再拨动 1 个小时(3 + 10 = 1);

对于时钟表盘来说,每 12 个小时为一圈,可以认为:-2 == 10,-1 = 11, -3 = 9,同样的:-2 == 10, -2 == 22, -2 == 34,...

可以看到规律是:-2、10、22、34 这些数字对 12 取模都得到同一个数(取正数),在数学上,两个整数除以“同一个整数”,若得相同余数,则这两个整数同余

表盘中的 12 就是这个“同一个整数”,可以看到这是一个可“溢出”的系统,-2、10、22、34 这几个数在表盘上表示的是一样的数,所以说这几个整数同余

也就是说:在计算的时候,可以用 10、22、34 这几个数字来替换 -2,替换之后的计算结果是相同的

那么对于一个 8 位 的二进制数来说,最多只有 8 位,在计算过程中,如果最高位产生了进位,就会被丢弃,所以它也是一个可“溢出”的系统。那么这里的“同一个整数”是多少呢?

从前面的内容中可以看到,使用补码表示的 8 位二进制数表示的范围是 -128 ~ 127,一共是 256 个数,所以如果对 256 取模,得到相同的余数,那么这些数就是同余数

例如:-2 和 254 对 256 取模,得到相同的余数,因此它俩就是同余数,那么在计算的时候,就可以用 254 来代替 -2

那么我们通过计算 3 + (-2) 来验证一下。

(1) 利用同余数来计算

3 + (-2) == 3 + 254 = 257

257 超过了最大的表示范围,所以溢出,结果就是 257 对 256 取模,结果为 1。

(2) 直接用补码来计算

3 的补码是 0000_0011,-2 的补码是 1111_1110,在计算的时候,把符号位也参与运算:

结果也是 1,也就是说:

在二进制计算中,使用补码来计算,“天然”就满足了“同余定理”。

细心的读者可能已经发现了:-2 的二进制补码表示,与 254 的二进制自然表示,它们的形式是一样的!

这种“天然”性,是巧合?还是计算机前辈的设计结果?!

五、总结

这篇文章,我们探讨了计算机系统的软件基石:二进制系统,主要的目的是帮助你理解二进制的表示、计算方式。

希望你看完之后能够豁然开朗!如果对您的理解有帮助的话,请转发给身边的技术小伙伴,共同成长!

END

来源:IOT物联网小镇

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
看完这些C语言例子,你一定连说5个卧槽!
一款活跃了17年的开发工具,好用到起飞~
最近爆火的电子血氧仪是什么原理?测的准吗?

→点关注,不迷路←

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 112浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 101浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 83浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦