运放-3-失调电压Vos的理解与仿真验证

原创 硬件工程师炼成之路 2023-01-30 08:00

我们知道,运放有非常多的参数,这些参数的意思,我们大抵都可以从网上查到。作为过来人,我觉得仅仅了解字面的意思是远远不够的。所以我从这一节,开始说一说运放的参数,先从运放的失调电压说起吧。

 

还是先带着问题看比较好,我们可以先想一下这几个问题:

1、失调电压是啥?咋产生的?

2、失调电压一般是uVmv级别的,这么小,电路设计还需要考虑吗?它到底有啥用?如果要考虑,该咋考虑呢?

 

失调电压是啥?咋产生的?

 

如上图,我们评估运放的失调电压时,一般建立上面的模型。我们将VpVn对地短路,如果是理想放大器,那么输出Vo应该是0V

 

真实放大器内部处理VpVn的输入级可能并不是理想的,其对应的晶体管会有偏差。导致当Vp=Vn=0V时,Vo并不是0V

 

要想让Vo0V,我们需要在输入端加上一个电压,这个电压就是失调电压Vos。我觉它的英文名input offset voltage(输入偏置电压)更容易理解一点。

 

为啥输入管子不一致会产生失调电压?

 

可能不好理解为什么管子不一致会导致产生失调电压。我结合看的资料,自己想了下,觉得可以这么理解(只是我的想法,不一定对)

 如上图,这是运放LM2904的框图,运放一般分为三级,第1级是输入级,对应图中的阴影部分,其输出Ib是后面两级的输入;第2级是中间级,主要提供放大倍数,第3级是输出级,主要是为了能改善带载能力,当然也有一定的放大能力(后两级未明确指出)。

 

我们看下输入级,最下面的两个管子构成了电流镜,这个电流镜在之前说TL431的时候我们聊过,再粘过来复习下。 

      根据电流镜,有IC4=IC1,然后如果说输入级的管子完全一样,IN+和IN-电压又一样,那么必然有IC1=IC2。结合两式子,就有IC2=IC4,进而推出Ib=0

      Ib=0有什么特殊的吗?

 

      Ib=0应该就对应运放线性区的中心点。我们回想一下运放的使用,运放工作在线性区时,是不是有“虚短”,就是IN+等于IN-,那不就对应Ib=0吗?

 

      前面说的是IN-IN+输入管子完全一样的情况,但是我们知道,实际生产中,管子肯定是有一定差别的,这就导致了在IN-IN+电压一样的时候,导致IC1IC2不一样,而因为电流镜,IC1=IC4依然成立,这样就导致IC2IC4,最终导致Ib0。这个Ib输入到后两级电路中被放大,最终反应到out端。

 

      如果我们想要Vout=0,那么就要Ib=0,这时候就得在IN+IN-端加一个电压差,来抵消管子差异带来的影响,正好让IC1=IC2这个压差其实就是Vos

 

      运放给出的Vos一般是一个范围,同一个型号的运放,不同的个体之间,Vos也是不同的,如下图LM2904的不同个体之间失调电压的分布情况。

到这里,脑子里应该对于运放的Vos有一个基本理解了吧,下面看看电路设计需要如何评估这个参数的影响。

 

电路设计时,Vos要不要考虑?

 

下图是LM2904手册中标注的失调电压。

可以看到,这颗运放的Vos最大才4mV好像也不怎么高,那么要不要考虑呢?

 

如果不知道,我们想一个具体的场景:假如我们有一个同相放大电路,放大50倍,要求输出电压误差不超过100mV这个运放满足要求吗?100mV4mV大很多呀,好像也能用,是这样吗?

 

答案是不满足要求的。

 

这是因为,失调电压在电路中也是会被放大的。上面的场景,4mV的失调电压,会在输出端产生200mV的误差,所以不满足要求。

 

不过有一点需要注意,失调电压在输出端造成的误差,并不总是等于放大电路本身的放大倍数,这一点我之前也是想错了,最近看了一些资料,才搞清楚这个问题。推己及人,我想兄弟们可能也会理解错误,所以下面说说具体是怎么回事。

 

失调电压引起的输出误差计算

 

先看同相放大电路


如上图是同相放大电路,原本输入为Vin,但是从里面的理想运放看过去,实际的输入电压为Vin+Vos。那么输出就是Vo=(1+R1/R2)*(Vin+Vos)

 

如果Vos=0,那么Vo=(1+R1/R2)*Vin,这是我们常见的同相放大电路输出公式。如果Vos0,那么就相当于在原来的基础上叠加了一个电压:(1+R1/R2)*Vos,这个电压就是Vos对输出端的影响。

 

可以看到,同相放大电路的放大倍数是1+R1/R2Vos也是被放大了1+R1/R2倍,等于这个电路本身的放大倍数,放大后叠加到输出端。

 

再看看反相放大电路

 

如上图是反相放大电路,若运放本身的失调电压是Vos,那么图中理想运放的同相输入端电压就是Vos,根据运放的虚短,反相端的电压也就是Vos

 

再根据虚断,流过R1的电流与R2的电流相等,Ir1=(Vo-Vos)/R1,Ir2=(Vos-Vin)/R2。那么就有了这个式子:(Vo-Vos)/R1=(Vos-Vin)/R2。化简得到Vo=-(R1/R2)*Vin+(1+R/R2)*Vos

 

如果Vos=0,那么Vo=-(R1/R2)*Vin,这是我们常见的反相放大电路输出公式,如果Vos0,那么就相当于在原来的基础上叠加了一个电压:(1+R1/R2)*Vos,这个电压就是Vos对输出端的影响。

 

可以看到,反相放大电路的放大倍数是-R1/R2,但是Vos是被放大了1+R1/R2倍,不等于这个电路本身的放大倍数。

 

总之,尽管同相和反相放大电路放大倍数公式不同,但Vos都是被放大1+R1/R2倍,叠加到输出端。

 

以上是理论的一个分析,下面来看看仿真的情况,加深理解

 

失调电压Vos仿真

 

先从TI官网下载LM2904spice文件,然后创建模型,使用LTspice仿真。

 

构建同相放大器电路如下:

输入电压为0V,如果运放模型没有Vos参数,或者说Vos=0,那么输出电压为0V,我们运行先看看是不是这样?

可以看到,这个器件模型是有Vos的,因为Vout都有2V电压了。在图示的工作条件下,Vp=0VVn=2.1653608mV,可以推断Vos2.1653608mV(约等于,是因为运放偏置电流的影响被我忽略了)。

 

另外,我们前面已经推导过了,Vos造成的输出电压为:Vos*(1+R1/R2)。计算输出Vout=1001*2.1653608mV=2.1675261608V,与上图中电路仿真中的结果2.1657262V是完全一致的。

 

可以看到,Vos是可以被放大的,如果放大电路的放大倍数很大,那么在输出端看到的误差电压也可能会非常大,我上面举的例子,放大1001倍的时候,输出端的误差已经到2V了,这个时候就需要关注这个参数了。

 

我们再给输入一个1mV/2Hz小信号,看看输出情况

可以看到,输出信号被叠加了一个2.17V的偏置电压,可以想到,如果没有Vos,中心电压应该是0V。所以说,Vos被放大了后,作为一个直流信号被叠加到输出端

 

小结

 

本期内容主要说了下运放的输入失调电压Vos,实际运用中,我觉得主要关键的点有下面几条:

1Vos是可以被运放放大,被放大后作为一个直流电压叠加到输出端

2、不论是同相放大电路还是反相放大电路,Vos在电路中的放大倍数都是1+R1/R2

 

以上内容纯属个人观点,如有问题,欢迎留言交流。


推荐阅读:
1、我写的东西都在这里了
2、还在用CAM350吗?

3、DCDC的Layout终极奥义

4、MOS管电流方向能反吗?体二极管能过多大电流?


硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 48浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 84浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 111浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 102浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 51浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 212浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 56浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦