运放-3-失调电压Vos的理解与仿真验证

原创 硬件工程师炼成之路 2023-01-30 08:00

我们知道,运放有非常多的参数,这些参数的意思,我们大抵都可以从网上查到。作为过来人,我觉得仅仅了解字面的意思是远远不够的。所以我从这一节,开始说一说运放的参数,先从运放的失调电压说起吧。

 

还是先带着问题看比较好,我们可以先想一下这几个问题:

1、失调电压是啥?咋产生的?

2、失调电压一般是uVmv级别的,这么小,电路设计还需要考虑吗?它到底有啥用?如果要考虑,该咋考虑呢?

 

失调电压是啥?咋产生的?

 

如上图,我们评估运放的失调电压时,一般建立上面的模型。我们将VpVn对地短路,如果是理想放大器,那么输出Vo应该是0V

 

真实放大器内部处理VpVn的输入级可能并不是理想的,其对应的晶体管会有偏差。导致当Vp=Vn=0V时,Vo并不是0V

 

要想让Vo0V,我们需要在输入端加上一个电压,这个电压就是失调电压Vos。我觉它的英文名input offset voltage(输入偏置电压)更容易理解一点。

 

为啥输入管子不一致会产生失调电压?

 

可能不好理解为什么管子不一致会导致产生失调电压。我结合看的资料,自己想了下,觉得可以这么理解(只是我的想法,不一定对)

 如上图,这是运放LM2904的框图,运放一般分为三级,第1级是输入级,对应图中的阴影部分,其输出Ib是后面两级的输入;第2级是中间级,主要提供放大倍数,第3级是输出级,主要是为了能改善带载能力,当然也有一定的放大能力(后两级未明确指出)。

 

我们看下输入级,最下面的两个管子构成了电流镜,这个电流镜在之前说TL431的时候我们聊过,再粘过来复习下。 

      根据电流镜,有IC4=IC1,然后如果说输入级的管子完全一样,IN+和IN-电压又一样,那么必然有IC1=IC2。结合两式子,就有IC2=IC4,进而推出Ib=0

      Ib=0有什么特殊的吗?

 

      Ib=0应该就对应运放线性区的中心点。我们回想一下运放的使用,运放工作在线性区时,是不是有“虚短”,就是IN+等于IN-,那不就对应Ib=0吗?

 

      前面说的是IN-IN+输入管子完全一样的情况,但是我们知道,实际生产中,管子肯定是有一定差别的,这就导致了在IN-IN+电压一样的时候,导致IC1IC2不一样,而因为电流镜,IC1=IC4依然成立,这样就导致IC2IC4,最终导致Ib0。这个Ib输入到后两级电路中被放大,最终反应到out端。

 

      如果我们想要Vout=0,那么就要Ib=0,这时候就得在IN+IN-端加一个电压差,来抵消管子差异带来的影响,正好让IC1=IC2这个压差其实就是Vos

 

      运放给出的Vos一般是一个范围,同一个型号的运放,不同的个体之间,Vos也是不同的,如下图LM2904的不同个体之间失调电压的分布情况。

到这里,脑子里应该对于运放的Vos有一个基本理解了吧,下面看看电路设计需要如何评估这个参数的影响。

 

电路设计时,Vos要不要考虑?

 

下图是LM2904手册中标注的失调电压。

可以看到,这颗运放的Vos最大才4mV好像也不怎么高,那么要不要考虑呢?

 

如果不知道,我们想一个具体的场景:假如我们有一个同相放大电路,放大50倍,要求输出电压误差不超过100mV这个运放满足要求吗?100mV4mV大很多呀,好像也能用,是这样吗?

 

答案是不满足要求的。

 

这是因为,失调电压在电路中也是会被放大的。上面的场景,4mV的失调电压,会在输出端产生200mV的误差,所以不满足要求。

 

不过有一点需要注意,失调电压在输出端造成的误差,并不总是等于放大电路本身的放大倍数,这一点我之前也是想错了,最近看了一些资料,才搞清楚这个问题。推己及人,我想兄弟们可能也会理解错误,所以下面说说具体是怎么回事。

 

失调电压引起的输出误差计算

 

先看同相放大电路


如上图是同相放大电路,原本输入为Vin,但是从里面的理想运放看过去,实际的输入电压为Vin+Vos。那么输出就是Vo=(1+R1/R2)*(Vin+Vos)

 

如果Vos=0,那么Vo=(1+R1/R2)*Vin,这是我们常见的同相放大电路输出公式。如果Vos0,那么就相当于在原来的基础上叠加了一个电压:(1+R1/R2)*Vos,这个电压就是Vos对输出端的影响。

 

可以看到,同相放大电路的放大倍数是1+R1/R2Vos也是被放大了1+R1/R2倍,等于这个电路本身的放大倍数,放大后叠加到输出端。

 

再看看反相放大电路

 

如上图是反相放大电路,若运放本身的失调电压是Vos,那么图中理想运放的同相输入端电压就是Vos,根据运放的虚短,反相端的电压也就是Vos

 

再根据虚断,流过R1的电流与R2的电流相等,Ir1=(Vo-Vos)/R1,Ir2=(Vos-Vin)/R2。那么就有了这个式子:(Vo-Vos)/R1=(Vos-Vin)/R2。化简得到Vo=-(R1/R2)*Vin+(1+R/R2)*Vos

 

如果Vos=0,那么Vo=-(R1/R2)*Vin,这是我们常见的反相放大电路输出公式,如果Vos0,那么就相当于在原来的基础上叠加了一个电压:(1+R1/R2)*Vos,这个电压就是Vos对输出端的影响。

 

可以看到,反相放大电路的放大倍数是-R1/R2,但是Vos是被放大了1+R1/R2倍,不等于这个电路本身的放大倍数。

 

总之,尽管同相和反相放大电路放大倍数公式不同,但Vos都是被放大1+R1/R2倍,叠加到输出端。

 

以上是理论的一个分析,下面来看看仿真的情况,加深理解

 

失调电压Vos仿真

 

先从TI官网下载LM2904spice文件,然后创建模型,使用LTspice仿真。

 

构建同相放大器电路如下:

输入电压为0V,如果运放模型没有Vos参数,或者说Vos=0,那么输出电压为0V,我们运行先看看是不是这样?

可以看到,这个器件模型是有Vos的,因为Vout都有2V电压了。在图示的工作条件下,Vp=0VVn=2.1653608mV,可以推断Vos2.1653608mV(约等于,是因为运放偏置电流的影响被我忽略了)。

 

另外,我们前面已经推导过了,Vos造成的输出电压为:Vos*(1+R1/R2)。计算输出Vout=1001*2.1653608mV=2.1675261608V,与上图中电路仿真中的结果2.1657262V是完全一致的。

 

可以看到,Vos是可以被放大的,如果放大电路的放大倍数很大,那么在输出端看到的误差电压也可能会非常大,我上面举的例子,放大1001倍的时候,输出端的误差已经到2V了,这个时候就需要关注这个参数了。

 

我们再给输入一个1mV/2Hz小信号,看看输出情况

可以看到,输出信号被叠加了一个2.17V的偏置电压,可以想到,如果没有Vos,中心电压应该是0V。所以说,Vos被放大了后,作为一个直流信号被叠加到输出端

 

小结

 

本期内容主要说了下运放的输入失调电压Vos,实际运用中,我觉得主要关键的点有下面几条:

1Vos是可以被运放放大,被放大后作为一个直流电压叠加到输出端

2、不论是同相放大电路还是反相放大电路,Vos在电路中的放大倍数都是1+R1/R2

 

以上内容纯属个人观点,如有问题,欢迎留言交流。


推荐阅读:
1、我写的东西都在这里了
2、还在用CAM350吗?

3、DCDC的Layout终极奥义

4、MOS管电流方向能反吗?体二极管能过多大电流?


硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论 (0)
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 325浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 443浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 653浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 400浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 694浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 116浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 241浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 52浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 557浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 512浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 306浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦