概要
计算光学成像是一个新兴多学科交叉领域。它以具体应用任务为准则,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式;同时,结合数学和信号处理知识,深度挖掘光场信息,突破传统光学成像极限。目前,计算光学成像处于高速发展阶段,已取得许多令人振奋的研究成果,并在手机摄像、医疗、无人驾驶等领域开始规模化应用。未来,计算光学成像有望进一步颠覆传统成像体系,带来更具创造力和想象力的应用,如无透镜成像、非视域成像等。
趋势解读
传统光学成像建立在几何光学基础上,借鉴人眼视觉“所见即所得”的原理,而忽略了诸多光学高维信息。当前传统光学成像在硬件功能、成像性能方面接近物理极限,在众多领域已无法满足应用需求。例如 ,在手机摄影领域,无法在保证成像效果的同时缩小器件重量和体积,出现令人诟病的“前刘海”和“后浴霸”的情况;在显微成像领域,无法同时满足宽视场和高分辨率的需求;在监控遥感领域,难以在光线较暗、能见度较低的复杂环境中获得清晰图像。
随着传感器、云计算、人工智能等新一代信息技术的不断演进,新型解决方案逐步浮出水面——计算光学成像。计算光学成像以具体应用任务为准则,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式;同时,结合数学和信号处理知识,深度挖掘光场信息,突破传统光学成像极限(如图1所示)。
图1 传统光学成像(左)和计算光学成像(右)
计算光学成像是一个新兴多学科交叉领域,早期概念在上个世纪70年代中期才逐步形成。随着信息技术的蓬勃发展,计算光学成像已成为国际研究热点。由于计算光学成像研究内容覆盖范围广,目前还没有一个比较明确的分类方法。按照计算成像技术所解决的应用问题来分类,可以大致分为以下三类:(1)功能提升:对传统方式无法获取的光学信息,如光场、偏振、相干度等进行成像或测量;(2)性能提升:即提升现有成像技术的性能指标,如空间分辨率、时间分辨率、景深、复杂环境鲁棒性等;(3)简化与智能化:通过单像素、无透镜等特定技术简化成像系统,或者以光速实现特定人工智能任务(如图2所示)。
图2 计算光学成像技术分类
计算光学成像技术现处于高速发展阶段,还需克服诸多挑战:首先,需以传感器为中心重新设计光学系统;其次,由于需要获取多维度光学信息,需引入新型光学器件和光场调控机制,随之而来的是更多的硬件成本和研发/调试时间成本;再次,为了使计算成像硬件和软件有更好的协同,则需重新开发算法工具;最后,对算力要求非常高,对应用设备芯片及其适配性提出更高要求。
计算光学成像虽然是一个新兴技术,但已取得了很多令人振奋的研究成果(2014诺贝尔奖——超分辨荧光显微成像、2017年诺贝尔奖——冷冻电镜),并在手机摄像、医疗、监控、工业检测、无人驾驶等领域开始规模化应用。如在手机摄像领域,主流手机厂商均初步融入了计算光学成像思路,从比拼硬件光学,转而追求硬件加算法的协同;目前手机摄像在相当一部分场景的拍摄效果达到、甚至超过一般单反相机。
未来,计算光学成像将进一步颠覆传统成像体系,带来更具创造力和想象力的应用。元成像芯片可实现大范围无像差三维感知,有望彻底解决手机后置摄像头突出的问题。无透镜成像(FlatCam)能够简化传统基于透镜的相机成像系统,进一步减小成像系统体积并有望用于各类可穿戴设备。此外,利用偏振成像技术能够透过可见度不高的介质清晰成像,实现穿云透雾。还有非视域成像,能够通过记录并解析光传播的高速过程来对非视域下目标进行有效探测,实现隔墙而视,在反恐侦察、医疗检测等领域具有广泛的应用价值。
专家点评
在过去的十多年来,信息技术的高速发展为光学成像注入了新的生命,计算成像应运而生,悄无声息中颠覆了人类与机器感知世界的方式。从“所见即所得”的一一映射到对高维光场的耦合编码与计算重构,计算成像将光作为信息载体的一部分,模糊了物理世界与数字世界的边界,从而突破了物理约束,见所未见。从此,我们能够捕捉光传播的轨迹,看到千里之外的声音,解析生命活动的奥秘,穿云透雾,洞察秋毫。从毫厘微末间的细胞病毒,到广袤宇宙中的第一缕光,计算成像将不断开拓人类的认知边界;从无人系统手机摄影,到工业监测安防监控,计算成像将融入人们生活的方方面面,推动数字经济高速发展。
(摘自:达摩院2023十大科技趋势)
延伸阅读:
《光学和射频应用的超构材料-2022版》
《光学和射频领域的超构材料和超构表面-2022版》
《AR/VR/MR光学元件技术及市场-2022版》