运放-2-放大器的电阻的选择

原创 硬件工程师炼成之路 2023-01-18 08:00

问题

 

上期之后,有几个兄弟提到了让讲一讲运放周围电阻的选取,典型问题如下:


如下图:如果我们把运放当作理想的,那么放大电路的增益就是两个电阻的比值,如果要让增益等于2,那么R1和R2分别是2K,1K能达到目的,20K,10K也能达到目的,200K,100K也能达到目的,2Ω,1Ω看着也能达到目的,那么这些阻值都是可以的吗?

 

电阻大小影响什么?

 

这个问题以前也没有深究过,虽然大抵知道一些影响因素,估计也是一些片面的因素,正好借这个机会专门查一查下面就是查到的一些内容。

 

电阻的影响主要有这几个方面:

1、驱动能力与功耗

2、误差

3、稳定性

 

放大器驱动能力与功耗

 

显然,电阻越小,功耗越高,放大器的输出电流也是越大的。

 

如上图的例子,如果R1=2Ω,R2=1Ω,很容算出来,流过反馈电阻的电流是1A,这个电流是从放大器输出来的,显然这个电流太大了,一般的放大器都不会有这么大的驱动能力。

 

以TI的通用运放LM2904为例,其输出能力如下图:

 

我上面举例的电路,运放是往外输出电流的,这个电流叫做拉电流(Source)。如果电流是从输出端往运放里面流,那么就是灌电流(sink)。图中的吸电流应该就是拉电流的意思,我找了对应的英文的手册,里面就是source。

 

总之,这个LM2904运放的最大输出拉电流(source)最小值为10mA(典型值为30mA),所以针对上面的电路,显然,输出电压最大时,输出电流最大。如果采用3.3V供电,那么输出电压不会超过3.3V,所以最大输出电流Imax=3.3V/R1<10mA,计算得R1>330Ω,即反馈电阻R1至少要大于330Ω。

        

    如果电阻小于这个,那么电流会大于10mA,那么输出电压幅度会降低,也会发生畸变。如下图是LM2904的输出电压与输出电流的关系,在电流过大时,输出的最大摆幅是会下降的。图中纵坐标我理解是“Vcc-Vout”,这个放大器为非轨至轨运放,在电流较小时,输出最大电压只比VCC小1.2V左右,当输出电流大于30mA,可以看到纵坐标“Vcc-Vout”急剧上升,即Vout急剧下降,输出电压幅度降低。

 

这里提一下,为什么图中是30mA呢?而我计算用的是10mA?从前面表中看出,30mA是典型值,显然,我们真正设计要考虑温度,器件一致性,所以计数时用的是表中的最小值,即10mA。

 

根据运放的驱动能力的限制,我们可以得到反馈电阻的最小值,那么电阻上限值如何得到呢?

 

误差

 

如果反馈电阻过大,输出误差可能会增大,这里原因我主要想到2点

1、电阻本身是有噪声的,阻值越大,噪声越大

2、电阻过大,增大了偏置电流引起的失调电压

 

关于第一点,一般有一个原则,就是电阻噪声,不能大于运放本身的噪声。因为运放本身的噪声大小与成本相关,如果花了钱选了一个高精密的运放,结果电阻噪声占主导地位,这显然是不合理的。

 

所以呢,我们需要计算运放的噪声和电阻的噪声。

 

先来看运放的噪声。

 

查看LM2904手册,噪声电压密度曲线如下:

 

我们要先求电路的带宽噪声,系统带宽这里指的是运放电路的带宽,上面电路放大两倍,LM2904本身的增益带宽积为0.7Mhz,所以系统3dB带宽为:0.7Mhz/2=0.35Mhz。这个电路等效为一阶滤波器,带宽还需要乘以相关的系数1.57,因此,最终系统带宽为:0.35Mhz*1.57=0.55Mhz。

 

从上图曲线中可以看出,系统的带宽噪声电压密度为40nV(hz)^0.5,也可以下面数据表中看出:

 

计算得电路的带宽噪声有效值为:

 

除了带宽噪声,还需要计算1/f噪声,计算过程如下:

 

到此我们计算出了电路的带宽噪声为29665nV,1/f噪声为574nV,可以看到,带宽噪声占主导地位。我们继续求得电路的总噪声为29671nV。

 

问题来了,这个噪声电压是什么意思?是哪里的噪声呢?

 

这个噪声可以看作是运放输入端的噪声电压,也就是说它是可以被放大的。

 

知道了运放噪声,我们需要知道电阻的噪声是多少?

 

电阻的噪声通常指的热噪声,电阻热噪声有效值的计算公式是:

 

系统带宽这里指的是运放电路的带宽,前面已经求出来了,为0.55Mhz。当环境温度是25℃,根据开尔文温度和摄氏温度的转换关系,则T=25+273.15=298.15K

 

根据前面的原则:电阻噪声,不能大于运放本身的噪声。

 

计算得,电阻R<97.2KΩ

 

问题来了,这个电阻R是指哪个电阻?是R1还是R2?

 

这个电阻R为R1和R2的并联,我们举的例子中:R1=2*R2,那么R=R1//R2=0.33*R1。所以有R=0.33R1<97.2KΩ,求得:R1<295KΩ

 

综上所述,要想电阻噪声造成的影响小于运放本身的噪声,R1<295KΩ。当然,如果电阻取小一点,电阻噪声是会更小的。

 

以上是从运放噪声,电阻噪声求得的电阻值要求。除此之外,电阻过大,增大了偏置电流引起的失调电压,也会增大误差。

 

偏置电流的影响

 

我们知道运放的输入阻抗很大,所以才有了“虚断”的概念。其根本原因是因为外部电阻的电流远大于运放输入端的偏置电流,所以我们分析的时候,可以忽略偏置电流,将流入运放输入端的电流看作是0。

 

显然,我们需要IR远大于Ib,如果不满足,运放输入端会分走一部分电流,造成流过R1和R2的电流有差异,放大倍数也不是R1/R2。

 

Ib很简单,直接查看放大器手册就可以了,查看LM2904规格书手册,可以看到,偏置电流Ib最大为300nA。

 

如果说Ib为0时没有Ib引起的误差,那么当Ib不为0时,其造成的输出电压误差就是Ib在反馈电阻R1上的压降。

 

这个应该很容易得到:

当Ib=0时,有IR1=IR2,Vout=IR1*R1= IR2*R1,即IR2*R1为无误差时的输出电压。

当Ib不为0时,有IR1=IR2+Ib,Vout=IR1*Ib=(IR2+Ib)*R1=IR2*R1+R1*Ib。相对于Ib=0时的输出电压,R1*Ib为多出来的,即为Ib引起的输出电压。

 

因此,Ib引起的输出误差电压为:Vout(err)=R1*Ib

 

以LM2904为例,Ib(max)=300nA,如果我们假设输出误差电压小于10mV,则有R1*300nA<10mV,可以求得R1<33.3K

 

以上就是偏置电流的大概评估,除此之外,电阻可能还会引起放大器的稳定性,特别是高速运放放大电路。

 

稳定性的问题

 

如果反馈电阻过大,可能会造成运放不稳定,这个我先简单说一说吧:

运放放大本身会有相移,然后反馈电阻与反相端的寄生电容也会造成相移,二者累加会在某个频率处相移达到180°,变成正反馈,如果此频率处增益大于1,那么就不稳定。

反馈电阻越大,会在更低的频率达到对应的相移,也就是越容易不稳定。

 

这个运放的稳定性分析本身也不是个容易的事情,有机会单独说一说吧,这里就不展开了

 

总结

 

以上就是我查到的关于反馈电阻阻值需要考虑的点,包含三个方面:

1、运放驱动能力与功耗

2、误差

3、稳定性

 

仔细想来,这个反馈电阻选型其实是包含了非常多的内容,真要说清楚也是相当不容易的。它跟用的什么运放,噪声要求是什么样的,要不要做低功耗,运放的参数是什么样的,都有很大的关系,并不能一刀切。我们可以在工作中使用经验值,但是在发现好像有风险时,也需要能够去动手分析,算一算。

 

以上内容纯属个人想法,如有问题,欢迎留言交流。

推荐阅读:
1、我写的东西都在这里了
2、还在用CAM350吗?

硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论 (0)
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 153浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 101浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 222浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 155浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 168浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 217浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 184浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 95浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 232浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 227浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 240浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦