一灯大师,基于imx6ull点亮LED灯

原创 专注于无线通信的蓬勃 2023-01-14 13:39

一.imx6ull GPIO原理

1. STM32 GPIO回顾

我们一般拿到一款全新的芯片,第一个要做的事情的就是驱动其 GPIO,控制其 GPIO 输出高低电平,我们学习 I.MX6U 也一样的,先来学习一下 I.MX6U 的 GPIO。在学习 I.MX6U的 GPIO 之前,我们先来回顾一下 STM32 的 GPIO 初始化(如果没有学过 STM32 就不用回顾了),我们以最常见的 STM32F103 为例来看一下 STM32 的 GPIO 初始化,示例代码如下:

void LED_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);//使能 PB 端口时钟

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //PB5 端口配置
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO 口速度
    GPIO_Init(GPIOB, &GPIO_InitStructure); //根据设定参数初始化 GPIOB.5

    GPIO_SetBits(GPIOB,GPIO_Pin_5); //PB.5 输出高
}

上述代码就是使用库函数来初始化 STM32 的一个 IO 为输出功能,可以看出上述初始化代码中重点要做的事情有一下几个:

①、使能指定 GPIO 的时钟。

②、初始化 GPIO,比如输出功能、上拉、速度等等。

③、 STM32 有的 IO 可以作为其它外设引脚,也就是 IO 复用,如果要将 IO 作为其它外设引脚使用的话就需要设置 IO 的复用功能。

④、最后设置 GPIO 输出高电平或者低电平。

STM32 的 GPIO 初始化就是以上四步,那么会不会也适用于 I.MX6U 的呢? I.MX6U 的GPIO 是不是也需要开启相应的时钟?是不是也可以设置复用功能?是不是也可以设置输出或输入、上下拉、速度等等这些?我们现在都不知道,只有去看 I.MX6U 的数据手册和参考手册才能知道,带着上面四个疑问打开这两份手册,然后就是“啃”手册。

2. imx6ull原理图

可以看到LED挂在GPIO1_IO03上,输出高电平就是熄灭LED灯,输出低电平就是点亮LED灯

3. imx6ull寄存器查看

对于imx6ull我们基本上在LED上会用到以下章节的内容:

CCM: Clock Controller Module (时钟控制模块) - 章节18

IOMUXC : IOMUX Controller,IO复用控制器 - 章节32

GPIO: General-purpose input/output,通用的输入输出口 - 章节28

3.1 GPIO的模块结构

参考资料:芯片手册《Chapter 28: General Purpose Input/Output (GPIO)》

有5组GPIO(GPIO1~GPIO5),每组引脚最多有32个,但是可能实际上并没有那么多。

GPIO1有32个引脚:GPIO1_IO0~GPIO1_IO31;

GPIO2有22个引脚:GPIO2_IO0~GPIO2_IO21;

GPIO3有29个引脚:GPIO3_IO0~GPIO3_IO28;

GPIO4有29个引脚:GPIO4_IO0~GPIO4_IO28;

GPIO5有12个引脚:GPIO5_IO0~GPIO5_IO11;

GPIO的控制涉及4大模块:CCM、IOMUXC、GPIO模块本身,框图如下:

3.2 CCM用于设置是否向GPIO模块提供时钟

参考资料:芯片手册《Chapter 18: Clock Controller Module (CCM)》

GPIOx要用CCM_CCGRy寄存器中的2位来决定该组GPIO是否使能。哪组GPIO用哪个CCM_CCGR寄存器来设置,请看上图红框部分。

CCM_CCGR寄存器中某2位的取值含义如下:

① 00:该GPIO模块全程被关闭

② 01:该GPIO模块在CPU run mode情况下是使能的;在WAIT或STOP模式下,关闭

③ 10:保留

④ 11:该GPIO模块全程使能

GPIO2时钟控制:

GPIO1时钟控制:

GPIO3时钟控制:

GPIO4时钟控制:

3.3 IOMUXC:引脚的模式(Mode、功能)

参考资料:芯片手册《Chapter 32: IOMUX Controller (IOMUXC)》

对于某个/某组引脚,IOMUXC中有2个寄存器用来设置它:

① 选择功能:

IOMUXC_SW_MUX_CTL_PAD_<PADNAME> :Mux pad xxx,选择某个pad的功能

IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>:Mux grp xxx,选择某组引脚的功能

某个引脚,或是某组预设的引脚,都有8个可选的模式(alternate (ALT) MUX_MODE)。

某个引脚,或是某组预设的引脚,都有8个可选的模式(alternate (ALT) MUX_MODE)。

比如:

② 设置上下拉电阻等参数:

IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>:pad pad xxx,设置某个pad的参数

IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>:pad grp xxx,设置某组引脚的参数

比如:

3.4 GPIO模块内部

我们暂时只需要关心3个寄存器:

① GPIOx_GDIR:设置引脚方向,每位对应一个引脚,1-output,0-input

② GPIOx_DR:设置输出引脚的电平,每位对应一个引脚,1-高电平,0-低电平

③ GPIOx_PSR:读取引脚的电平,每位对应一个引脚,1-高电平,0-低电平

GPIO1Memory map如下:

3.5 读GPIO

翻译一下:

① 设置CCM_CCGRx寄存器中某位使能对应的GPIO模块// 默认是使能的,上图省略了

② 设置IOMUX来选择引脚用于GPIO

③ 设置GPIOx_GDIR中某位为0,把该引脚设置为输入功能

④ 读GPIOx_DR或GPIOx_PSR得到某位的值(读GPIOx_DR返回的是GPIOx_PSR的值)

3.6 写GPIO

翻译一下:

① 设置CCM_CCGRx寄存器中某位使能对应的GPIO模块// 默认是使能的,上图省略了

② 设置IOMUX来选择引脚用于GPIO

③ 设置GPIOx_GDIR中某位为1,把该引脚设置为输出功能

④ 写GPIOx_DR某位的值

二.Linux 下 LED 灯驱动原理

Linux 下的任何外设驱动,最终都是要配置相应的硬件寄存器。所以本章的 LED 灯驱动最终也是对 I.MX6ULL 的 IO 口进行配置,与裸机实验不同的是,在 Linux 下编写驱动要符合 Linux的驱动框架。I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 GPIO1_IO03 这个引脚上,因此本章实验的重点就是编写 Linux 下 I.MX6UL 引脚控制驱动。

1. 地址映射

在编写驱动之前,我们需要先简单了解一下 MMU 这个神器, MMU 全称叫做 MemoryManage Unit,也就是内存管理单元。在老版本的 Linux 中要求处理器必须有 MMU,但是现在Linux 内核已经支持无 MMU 的处理器了。 MMU 主要完成的功能如下:

①、完成虚拟空间到物理空间的映射。

②、内存保护,设置存储器的访问权限,设置虚拟存储空间的缓冲特性。

我们重点来看一下第①点,也就是虚拟空间到物理空间的映射,也叫做地址映射。首先了解两个地址概念:虚拟地址(VA,Virtual Address)、物理地址(PA, Physcical Address)。对于 32 位的处理器来说,虚拟地址范围是 2^32=4GB,我们的开发板上有 512MB 的 DDR3,这 512MB 的内存就是物理内存,经过 MMU 可以将其映射到整个 4GB 的虚拟空间 ,如图:

物理内存只有 512MB,虚拟内存有 4GB,那么肯定存在多个虚拟地址映射到同一个物理地址上去,虚拟地址范围比物理地址范围大的问题处理器自会处理,这里我们不要去深究,因为MMU 是很复杂的一个东西 。

Linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后 CPU 访问的都是虚拟 地 址 。 比 如 I.MX6ULL 的 GPIO1_IO03 引 脚 的 复 用 寄 存 器IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 的地址为 0X020E0068。如果没有开启 MMU 的话直接向 0X020E0068 这个寄存器地址写入数据就可以配置 GPIO1_IO03 的复用功能。现在开启了 MMU,并且设置了内存映射,因此就不能直接向 0X020E0068 这个地址写入数据了。我们必须得到 0X020E0068 这个物理地址在 Linux 系统里面对应的虚拟地址,这里就涉及到了物理内存和虚拟内存之间的转换,需要用到两个函数: ioremap 和 iounmap。

1.1 ioremap 函数

ioremap 函 数 用 于 获 取 指 定 物 理 地 址 空 间 对 应 的 虚 拟 地 址 空 间 , 定 义 在arch/arm/include/asm/io.h 文件中,定义如下:

#define ioremap(cookie,size)        __arm_ioremap((cookie), (size), MT_DEVICE)
void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
{
    return arch_ioremap_caller(phys_addr, size, mtype,
        __builtin_return_address(0));
}

ioremap 是个宏,有两个参数: cookie 和 size,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,这些参数和返回值的含义如下:

phys_addr:要映射给的物理起始地址。

size:要映射的内存空间大小。

mtype: ioremap 的类型,可以选择 MT_DEVICE、 MT_DEVICE_NONSHARED、MT_DEVICE_CACHED 和 MT_DEVICE_WC, ioremap 函数选择 MT_DEVICE。

返回值: __iomem 类型的指针,指向映射后的虚拟空间首地址。

假如我们要获取 I.MX6ULL 的 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器对应的虚拟地址,使用如下代码即可:

#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
static void __iomem* SW_MUX_GPIO1_IO03;
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4); 

宏 SW_MUX_GPIO1_IO03_BASE 是寄存器物理地址, SW_MUX_GPIO1_IO03 是映射后的虚拟地址。对于 I.MX6ULL 来说一个寄存器是 4 字节(32 位)的,因此映射的内存长度为 4。映射完成以后直接对SW_MUX_GPIO1_IO03 进行读写操作即可。

1.2 iounmap 函数

卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射, iounmap 函数原型如下:

#define iounmap                __arm_iounmap
void __arm_iounmap(volatile void __iomem *io_addr)
{
    arch_iounmap(io_addr);
}

iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。假如我们现在要取消掉 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器的地址映射,使用如下代码即可:

iounmap(SW_MUX_GPIO1_IO03);

2. I/O 内存访问函数

这里说的 I/O 是输入/输出的意思,并不是我们学习单片机的时候讲的 GPIO 引脚。这里涉及到两个概念: I/O 端口和 I/O 内存。当外部寄存器或内存映射到 IO 空间时,称为 I/O 端口。当外部寄存器或内存映射到内存空间时,称为 I/O 内存。但是对于 ARM 来说没有 I/O 空间这个概念,因此 ARM 体系下只有 I/O 内存(可以直接理解为内存)。使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。

2.1 读操作函数

读操作函数有如下几个:

u8 readb(const volatile void __iomem *addr)
u16 readw(const volatile void __iomem *addr)
u32 readl(const volatile void __iomem *addr)

readb、 readw 和 readl 这三个函数分别对应 8bit、 16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。

2.2 写操作函数

void writeb(u8 value, volatile void __iomem *addr)
void writew(u16 value, volatile void __iomem *addr)
void writel(u32 value, volatile void __iomem *addr)

writeb、 writew 和 writel 这三个函数分别对应 8bit、 16bit 和 32bit 写操作,参数 value 是要写入的数值, addr 是要写入的地址。

三. 编写LED代码

    • driver代码

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>


#define LED_MAJOR        200
#define LED_NAME        "led"

static struct class *led_class;

#define CCM_CCGR1_BASE                (0X020C406C)    
#define SW_MUX_GPIO1_IO03_BASE        (0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE        (0X020E02F4)
#define GPIO1_DR_BASE                (0X0209C000)
#define GPIO1_GDIR_BASE                (0X0209C004)

static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;


static int led_open(struct inode *inode, struct file *filp)
{
    printk("led_open\r\n");
    return 0;
}


static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
    printk("led_read\r\n");
    return 0;
}

static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
    printk("led_write\r\n");
    int retvalue;
    u32 val = 0;
    unsigned char databuf[1];
    unsigned char ledstat;

    retvalue = copy_from_user(databuf, buf, cnt);
    if(retvalue < 0) {
        printk("kernel write failed!\r\n");
        return -EFAULT;
    }

    ledstat = databuf[0];

    printk("ledstat:%d\r\n",ledstat);

    if(ledstat == 1)
    {
        val = readl(GPIO1_DR);
        val &= ~(1 << 3);    
        writel(val, GPIO1_DR);
    }
    else if(ledstat == 0)
    {
        val = readl(GPIO1_DR);
        val|= (1 << 3);    
        writel(val, GPIO1_DR);
    }

    return 1;
}


static int led_release(struct inode *inode, struct file *filp)
{
    printk("led_release\r\n");
    return 0;
}



static struct file_operations led_fops = {
    .owner = THIS_MODULE,
    .open = led_open,
    .read = led_read,
    .write = led_write,
    .release =     led_release,
};


static int __init led_driver_init(void)
{
    u32 val = 0;
    int retvalue = 0;
    printk("led_driver_init\r\n");

    IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);
    SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
    SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
    GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);
    GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);

    val = readl(IMX6U_CCM_CCGR1);
    val &= ~(3 << 26);
    val |= (3 << 26);
    writel(val, IMX6U_CCM_CCGR1);

    writel(5, SW_MUX_GPIO1_IO03);

    writel(0x10B0, SW_PAD_GPIO1_IO03);

    val = readl(GPIO1_GDIR);
    val &= ~(1 << 3);
    val |= (1 << 3);
    writel(val, GPIO1_GDIR);

    val = readl(GPIO1_DR);
    val |= (1 << 3);    
    writel(val, GPIO1_DR);

    
    retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);
    if(retvalue < 0){
        printk("register chrdev failed!\r\n");
        return -EIO;
    }
    
    led_class = class_create(THIS_MODULE,"led_class");

    device_create(led_class,NULL,MKDEV(LED_MAJOR,0),NULL,"led"); /* /dev/led */
    
    return 0;
}

static void __exit led_driver_exit(void)
{
    printk("led_driver_exit\r\n");

    iounmap(IMX6U_CCM_CCGR1);
    iounmap(SW_MUX_GPIO1_IO03);
    iounmap(SW_PAD_GPIO1_IO03);
    iounmap(GPIO1_DR);
    iounmap(GPIO1_GDIR);
    device_destroy(led_class,MKDEV(LED_MAJOR,0));
    class_destroy(led_class);
    unregister_chrdev(LED_MAJOR, LED_NAME);
}

module_init(led_driver_init);
module_exit(led_driver_exit);
MODULE_LICENSE("GPL"); 

2.测试app

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>



int main(int argc, char *argv[])
{
    int fd;
    int ret;
    uint8_t led;
    fd  = open(argv[1], O_RDWR);

    if(!strcmp("led_on",argv[2]))
    {
        printf("led on\r\n");
        led = 1;
        write(fd,&led,sizeof(led));
    }

    if(!strcmp("led_off",argv[2]))
    {
        led = 0;
        printf("led on\r\n");
        write(fd,&led,sizeof(led));
    }

    
    close(fd);

    
}

测试方法:

点亮 LED灯 ./test_app /dev/led led_on

熄灭 LED灯 ./test_app /dev/led led_on

3.Makefile

KERNELDIR := /home/zhongjun/project/board/yuanzi/imx6ull/nfs/kernel
CURRENT_PATH := $(shell pwd)

obj-m := led_drv.o

build: kernel_modules

kernel_modules:
    $(MAKE) -C $(KERNELDIR) $(KBUILD_CFLAGS) M=$(CURRENT_PATH) modules
    $(CROSS_COMPILE)gcc -o test_app test_app.c
clean:
    $(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean
    rm -rf test_app

参考:

1.https://weidongshan.blog.csdn.net/article/details/122475478

2.【韦东山】嵌入式Linux应用开发完全手册V4.0_韦东山全系列视频文档-IMX6ULL开发板.docx

3.【正点原子】I.MX6U嵌入式Linux驱动开发指南V1.4.pdf

专注于无线通信的蓬勃 朝气蓬勃——不积跬步 无以至千里, 不积小流 无以成江海
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 81浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 48浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 110浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 76浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 72浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 115浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 193浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 80浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 176浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 79浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦