新型存储技术:未来方向研究和思考

智能计算芯世界 2023-01-15 00:00



Storage Class Memory (SCM)是非易失性内存,该类介质的存取速度略比内存慢,但是远快于NAND类介质。本文对该类介质的特性及使用方法做了简单总结和介绍。


下载地址:

半导体先进封装市场简析(2022)

DPU发展分析报告(2022年)

专用数据处理器 (DPU)技术白皮书

2021中国DPU行业发展白皮书

量子信息技术发展与应用研究报告(2022年)

HotChips34 CXL2/3内存技术合集
Hotchips 34 Intel CPU处理器合集

目前在研的新型SCM介质种类繁多,但是比较主流的有PCM、ReRAM、PCRAM、RRAM、MRAMNRAM几大类产品。


PRAM(Phase-Change RAM)利用特殊合金材料在晶态和非晶态下的导电性差异来表示0或者1数据。其优点是结构简单,容易实现大容量、同时具备低成本等特点。


用于Cache加速和Cache内存应用,考虑到PRAM的成熟度、对热度敏感和写穿透等因素,在应用中一般搭配DRAM或SRAM一起使用,在填补RAM和Storage之间的性能、容量差距的同时,形成具有分级能力的高速Cache应用资源池;其典型代表为Intel的3D Xpoint。


ReRAM(Resistive RAM)通过在上下电极间施加不同的电压,控制Cell内部导电丝的形成和熔断的状态对外呈现不同的阻抗(忆阻器)值来表示数据;目前典型代表厂商为HPE和Crossbar。



     HPE提出了忆阻器内存技术,并计划在新型计算机架构The Machine中使用,未来成为取代SRAM、DRAM形成通用内存(Universal Memory),主流的SCM技术如下:



随着大数据时代的到来,以及多核、分布式、内存计算、云等技术的不断发展,应用场景对存储系统的要求越来越高,SCM技术的出现为存储系统的发展提供了新的路径。在未来,新型非易失存储介质将进一步在计算机存储系统中崭露头角,特别是当前Intel已经推出了它的SCM技术——3D XPoint,而针对以此为代表的SCM介质在系统级的应用,仍有很多挑战性的问题需要深入研究,这些研究,将可能从以下几个方面展开,特此交流探讨,以启发我们对未来存储系统以及未来上层应用的思考(本文中讨论的研究方向不涉及介质自身的研究和芯片级别的研究):


     MRAM(Magnetic RAM)磁性随机存储器通过电流磁场改变电子自旋方向来表示不同数据状态。比较适用于CPU的高速缓存(如L2 Cache),代表厂商为Toshiba和Everspin。


在新兴的非易失性二进制存储器中,自旋转矩传递RAM (STT-MRAM)、自旋轨道转矩RRAM (SOT MRAM)和压控MRAM (VC MRAM)因其工作电压低、速度快和耐用性以及先进的CMOS技术兼容性而特别具有吸引力。


台积电研发STT-MRAM解决方案主要是用来克服嵌入式闪存技术的扩展限制。在2021年IEEE会议上,台积电展示了嵌入16nm FinFET CMOS工艺的STT-MRAM的可靠性和抗磁性。


此外,台积电还在积极探索SOT-MRAM和VC-MRAM,并与外部研究实验室、财团和学术合作伙伴合作。台积电的SOT-MRAM探索由高速(<2ns)二进制内存解决方案驱动,该解决方案比传统的6T-SRAM解决方案密度要大得多,同时也更节能。2022年6月,台湾工研院宣布,其与台积电合作开发的低压电流SOT-MRAM,具有高写入效率和低写入电压的特点。工研院表示,其SOT-MRAM实现了0.4纳秒的写入速度和7万亿次读写的高耐久度,还可提供超过10年的数据存储寿命。


 NRAM(Nantero’s CNT RAM)碳纳米管随机存储器采用碳纳米管作为开关,控制电路通断表示不同的数据状态。由于碳纳米管尺寸非常小并且具备极强的韧性,因此NRAM密度可以很高、寿命也比较长,理论功耗也比较低。

RRAM:台积电认为,AI和IoT所组成的强大组合AIoT,可能会在未来几年推动半导体行业的增长。高能效机器学习需要具有低功耗的大容量片上存储器。它可以同时支持 1T1R(1 个晶体管 + 1RRAM)和 1S1R(1 个选择器 + 1RRAM)阵列架构。与传统的1T1R架构相比,1S1R架构可以实现更高的密度并实现3D集成。2020年台积电开始生产28nm电阻随机存取存储器(RRAM),这是台积电为价格敏感的物联网市场所开发的低成本解决方案。


2022年11月25日,英飞凌和台积电宣布,两家公司准备将台积电的RRAM非易失性存储器 (NVM) 技术引入英飞凌的下一代AURIX™微控制器 (MCU),首批基于28纳米 RRAM 技术的样品将于2023年底提供给客户。目前,市场上的大多数 MCU系列都基于嵌入式闪存技术。RRAM的引入对MCU来说是一项新的革新,RRAM NVM可以进一步扩展到 28 纳米及以上。台积电和英飞凌成功为在汽车领域引入RRAM奠定了基础。


台积电还在继续探索新的RRAM材料堆栈及其密度驱动集成,以及可变感知电路设计和编程结构,以实现面向AIoT应用的高密度嵌入式RRAM解决方案选项。

PCRAM:相变随机存储器(PCRAM)是一种基于硫化物玻璃的非易失性存储器。通过控制焦耳加热和淬火,PCRAM在非晶态(高电阻)和晶体态(低电阻)之间过渡的电阻。存储器的电阻状态在很大程度上与非晶态区域的大小及其可控性和稳定性有关。这使得PCRAM细胞独特地能够存储多个状态(电阻),从而具有比传统二进制存储器更高的有效细胞密度的潜力。PCRAM可以支持阵列配置,包括一个晶体管和一个存储器(1T1R)阵列和密度更大的一个选择器和一个存储器(1S1R)阵列。


相变存储器具有很有前途的多级单元 (MLC) 功能,可满足神经形态和内存计算应用中不断增长的片上存储器容量需求。台积电一直在探索PCRAM材料、电池结构和专用电路设计,以实现AI和ML的近内存和内存计算。台积电的一篇论文中指出,他们提出了三种新颖的 MLC PCM 技术:1)设备需求平衡,2)基于预测的MSB偏置参考,3)位优先布局,以解决神经网络应用中的 MLC 设备挑战。使用测量的 MLC 误码率,所提出的技术可以将 MLC PCM 保留时间提高105倍,同时将ResNet-20推理精度下降保持在3%以内,并在存在时间阻力漂移的情况下,将CIFAR-100数据集的精度下降减少 91% (10.8X)。如下图所示。


 

1、基于SCM的存储系统的组织结构方法研究


当前存储系统的组织结构是专为易失、读写差异小、几乎无寿命问题的DRAM以及传统的硬盘、NAND等存储介质而设计的,这种系统组织结构对于SCM而言是不适用的,无论是当前的内存管理方法、访问接口设计,还是I/O请求调度等都没有充分考虑SCM的缺点,比如典型的SCM介质PCRAM(相变存储器),其寿命、性能、读写不均衡等问题,都会导致当前技术不能够充分发挥介质的特性,同时还可能会将介质的弱点放大,不利于构建面向未来大数据和内存计算环境的高性能低功耗、大容量的存储系统。


如上所述,从SCM、DRAM、NAND Falsh等多种介质的优缺点出发,研究SCM在异构混合存储系统中的组织方法,合理组合多种存储介质,构建多介质的异构混合存储环境,建立可以充分发挥各存储介质特性的体系结构,解决多介质异构混合存储时的系统优化设计问题,实现新型非易失存储器与现有存储技术和系统的完美融合。

 

2、基于SCM的存储系统的访问方法研究


传统存储系统中的访问方法是立足于DRAM、NAND Falsh等设计的,它将不再适用于具有可字节编址和位修改等特性的SCM和DRAM,部分SCM介质的读写不对称使其难以按流水线方式执行读写混合I/O请求,且当前SCM与现有内存系统在访问特性上有显著差异,与此同时SCM支持本地修改等异于NAND Falsh的特性也使得当前外存领域的访问方式需要优化和改进。


研究基于SCM存储系统的多接口适配的访问方法,以匹配新型非易失存储器的特性,从而隐藏多介质在访问粒度、延迟、带宽及寿命等方面的差距,提升存储系统的性能。未来研究将可能包括:


①研究SCM在内存环境中字节粒度寻址的读写访问方法,充分挖掘SCM通道间、芯之间以及芯片内部的多层次访问并行性;

②研究在外存环境中块粒度寻址的高效读写访问方法,并遵循业界针对非易失存储器的接口标准(如NVMe协议);

③优化访问路径,减少系统I/O调用给性能带来的影响;

④利用SCM的读写特点来优化读写操作和流程,以此减少访问延迟;

⑤立足SCM特性优化系统中的数据结构,减少对SCM无用的写操作和写入数据量,以提升系统性能和寿命。

 

3、基于SCM的存储系统数据可靠性研究


随着工艺制程的降低,非易失存储器的存储单元不断变小,当SCM采用更小制程、提供更高存储密度和更大容量时,其存储单元的错误率随之升高.同时,SCM存储单元的可擦写次数有限(108~1012),频繁的擦写会导致芯片单元很快到达寿命极限.这些将使存储系统面临数据发生错误、损坏以及丢失的风险,对数据可靠性造成了极大的威胁。


未来的研究将立足于SCM的特性,通过多种途径来保障数据的可靠性,研究将可能在以下几个方面展开:


①研究降低当前已有的纠错机制(软硬件)所需的开销;

②研究可配置、适应数据集属性的组合校验算法,即区别不同属性的数据集,根据其所需的可靠性需求采用不同纠错能力和开销的校验算法,以平衡其纠错强度和校验开销;

③研究新的通过减少写操作次数、写入数据量来提升SCM的寿命的策略;

④研究新颖、可用范围广的磨损均衡策略,在现有磨损均衡基础上进行创新、优化,设计出可应用于不同需求环境下的磨损均衡策略,提升SCM寿命;

⑤研究基于SCM的坏块复用和数据容错机制,进一步增加SCM的使用寿命,提高数据可靠性;

⑥研究数据一致性的保障和维护,根据存储系统数据一致性需求、访问接口粒度等因素,设计低开销、多路径的数据更新策略和数据一致性维护方法。

 

4、基于SCM的存储系统数据安全性保障研究


由于SCM具有非易失性,即当系统断电时,SCM存储的数据并不会消失,从而通过恶意修改数据所导致的执行状态可能是持久的,即使设备断电,系统也会存在冷启动攻击的风险.因此非易失特性会使系统被入侵和数据被盗窃的风险增大.所以当采用SCM构建内存子系统时,需要考虑数据的安全性保障机制。


对此,未来该领域还需要研究针对操作系统的加密机制,通过加密模块对写入SCM的数据进行加密,防止存储数据被窃取或泄密的情况发生;研究利用访问权限控制等策略来保证数据的访问安全性;特别针对PCM中的系统关键数据,需采用强度更高的加密、上锁等算法,防止恶意的入侵修改所引起的系统安全问题,保障基于SCM的存储系统的数据安全性。

 

5、基于SCM的存储系统软件优化研究


由于SCM异于传统存储介质的特性,使得SCM存储技术不能良好地兼容当前存储系统的内存管理、文件系统等软件架构。基于SCM的存储系统,在软件层仍然需要改进,以进一步优化和提升存储系统的性能。


未来基于SCM的存储系统软件优化研究将可能包括:


①结合各存储介质的特性,基于SCM存储管理架构,研究冷热数据识别算法和数据热度分级管理等软件策略,降低存储系统中的读写操作开销,实现负载均衡;

②立足于SCM在存储系统中的应用场景(如统一内外存),针对SCM支持本地修改、位修改和可字节编址等特性,研究适应于SCM的文件系统,从而提升文件系统乃至存储系统的性能;

③研究基于SCM的内存分配机制及其优化策略,从操作系统层入手面向文件系统、虚拟内存等进行优化,降低页面分配等多种内存管理开销,充分地利用SCM的非易失性提高系统性能;

④研究设计新的软件调度算法,通过调度策略的设计和优化,达到系统性能的提升。

 

6、基于SCM的存储硬件原型系统的研究


由于真正的SCM芯片还没实现市场的量产,目前也就只有Intel的ColdStream问世,因此现有的研究还面临着几乎没有可用的基于SCM的真实硬件原型平台的尴尬局面,绝大多数研究均是在软件模拟器上进行的,当前比较成熟的模拟器有PCRAMsim、Simics、M5和DRAMsim以及近些年备受学者青睐的全系统模拟器GEM5。


由于SCM技术研究还处于起步阶段,其应用场景和价值尚未完全开发实现;而且目前市面上的主流存储器仍然不是SCM,适合于当前存储环境的大容量、高性能的SCM物理芯片稀贵,这些都导致当前系统级的研究几乎全都是基于软件模拟器进行的,从而无法获取最真实的实验数据以进行更加专业、深入的研究。


利用SCM物理芯片,实现真实的存储硬件原型系统,包括基于SCM的内存原型系统和外存原型系统,甚至于搭建基于SCM的专用硬件系统,比如基于SCM的DIMM条,基于SCM的全新硬件框架,基于SCM的高速通信通道等等,以解决目前相关研究没有原型平台的尴尬局面,通过在平台上获得最真实的数据,展开更有说服力、有数据依据的相关研究,将对当前内/外存储系统架构的研究工作起到积极作用。

 

7、基于SCM的事务性存储系统研究


事物存储技术作为存储领域最为关键的技术之一,几乎被应用于所有数据库系统与文件系统。随着闪存等介质的广泛应用,存储体系结构正面临着较大的变革,在这种背景下;因此在SCM技术的到来的背景下,研究基于SCM的事务性存储系统比较迫切。


针对目前SCM介质应用于事务处理技术,如下几个问题还需要进一步探索和研究:


①事务存储接口:如何提高实用性且支持不同特性事务的设备接口;

②数据可用性:如何高效迅速的进行故障恢复;

③系统可扩展性:分布式环境下,如何利用SCM提供高效的事务处理,多核环境下的分布式系统中如何提供更加优秀的日志等技术能力;

④数据可靠性:如何保证新介质中数据的可靠性持久化能力等等。

 

8、基于SCM的上层应用研究


在上述研究内容的背景下,显而易见可以看出SCM的多种优势都将会给未来的存储系统以及计算机其他技术领域带来变革,那么,面向SCM技术的内存数据库、面向SCM技术的实时分析应用、面向SCM技术的内存计算技术、面向SCM的大数据服务等等,都将可能会因为SCM的到来,有了新的机会和变革窗口。


这些领域的研究,最直接的,比如考虑将当前的存储介质全部换成SCM后,在性能得到收益的同时,应该如何应对新的问题,将是未来的研究重点。


下载地址:

DPU发展分析报告(2022年)

专用数据处理器 (DPU)技术白皮书

2021中国DPU行业发展白皮书

量子信息技术发展与应用研究报告(2022年)

DPU在数据中心和边缘云上的应用

英伟达DPU集数据中心于芯片

2021中国DPU行业发展白皮书 

CCIX缓存一致性互联技术概述

ARM CPU处理器资料汇总(1)

ARM CPU处理器资料汇总(2)

ARM系列处理器应用技术完全手册

CPU和GPU研究框架合集
虚拟人应用与实践报告(2022)
2022中国商用服务机器人行业简析
CAD行业简析报告(2022)
半导体先进封装市场简析(2022)


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。

电子书<服务器基础知识全解(终极版)>更新完毕。
获取方式:点击“小程序链接”即可查看182页 PPT可编辑版本和PDF阅读版本详情。
服务器基础知识全解PPT(终极版)
服务器基础知识全解PDF(终极版)


温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 658浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 203浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 609浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 122浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 321浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦