基于环境特征的地图匹配定位技术浅析

智驾最前沿 2023-01-14 08:30

--关注回复“SOA--

↓领取:面向智能车辆开发的开放性SOA方案

今天我们讨论基于环境特征的地图匹配定位。地图匹配定位是根据车辆相对于当地地标的位置来进行定位。在许多情况下,我们有提供当地地标的地图作为参考框架。基于先验地图,我们匹配历史中最相似的地图子集(图像/点云/特征点),根据匹配到的地图子集所提供的历史位姿真值、特征点坐标真值,计算点对间的变换矩阵,求解当前定位。地图匹配定位通常会输出相对的XYZ坐标,滚动/俯仰/偏航數值,或表示方向和空间自由的四元数。最流行的地图匹配定位算法有迭代最近点 (ICP) 以及正态分布变换 (NDT)。

为了进行地图匹配定位,我们必须有某种形式的传感器输入,例如激光雷达,雷达,相机等。使用激光雷达,可以会得到相对于基于点云的地图 (Point-cloud-based map) 的定位;使用雷达,可以得到相对于基于返回的地图 (Return-cloud-based map) 的定位;使用具有分类和深度的相机的位置,可以得到相对于基于对象的地图 (Object-based map) 的定位。

本文讨论主要集中在基于点云地图的 ICP 和 NDT 算法的原理和性能区别,以及相应拓展的深度学习⽅法。


基于点云的地图匹配方法

自动驾驶汽车中,摄像头被广泛应用,基于大量图像数据的深度学习应用的方式和功效已被广泛研究。然而,由于相机拍摄的图像只能记录二维的环境,不能用于准确估计三维环境,激光雷达(LiDAR)因此引起了业界的关注。在适当条件下,相比其他环境传感器,如摄像头和雷达,激光雷达更加精确和稳健,能够获取误差率在一厘米以内的三维距离信息。

在实际操作中,由于城市和郊区环境会不断变化,会影响匹配算法的精度。这些变化发生在不同的时间尺度上,包括动态和短暂的对象(例如停放的汽车),季节性的变化(植被、雪、灰尘)和人类影响,例如建造。因此,算法面对这些真实环境变化时的鲁棒性至关重要。其次,由于自动驾驶系统必须根据车辆行驶过程中环境变化做出实时决策,低延迟性极其关键。典型城市车速15~35mph,超过 100 毫秒的延迟将导致可能导致米级别的车辆位置不确定性,导致安全问题。因此,匹配算法需要同时考量精度和速度。

图 1. a: 实际地图 b: 点云地图 

作为业界最流行的三维环境点云匹配算法,ICP 和 NDT 已广泛用于地图构建和三维重建。图 2 展示了正态分布地图与点云地图之间的地图匹配过程。该过程对点云中的所有点执行匹配过程并重复,直到获得准确的汽车姿态估计。

图 2. 地图匹配流程 

迭代最近点 (ICP)

ICP 是最简单且易于实现的匹配算法,它用迭代的方法不断地最小化传感器数据和参考环境地图之间的点到点的欧几里得距离。在每一步中,选择离每个扫描点最近的参考点,并用最小化距离平方和来分别计算旋转和平移。

图 3. ICP(Udacity Self Driving Car Nanodegree)

正态分布变换 (NDT)

NDT 不像 ICP 那样使用点云的各个点,而是将位于三维像素内的 3D 数据点转换为正态分布。它把环境用局部概率密度函数 (PDF) 建模成一个平滑表面。参考点被分组为固定大小的单元格,形成三维像素网格,并用牛顿迭代法匹配最优的网格区间。

图 4. NDT(Udacity Self Driving Car Nanodegree)

ICP 与 NDT 的性能对比

相关的研究显示,当在小范围并有足够数量的特征时,这两种方法都表现得非常稳健,但 NDT 的运行速度比 ICP 快得多,并且定位误差要小得多。与 ICP 中关注单个点相比,将环境进行三维像素概率化的表达使得 NDT 能够获得环境的整体认知而不只是细节。基于 NDT 的方法具有更好的能力来处理实际变化,包括静态和动态的环境变化,以及计算效率更高。研究同时显示,NDT 的性能很大程度取决于三维像素分辨率的选择。换句话说,需要根据传感器精度以及环境条件,仔细地调整三维像素的大小,才能保证其性能。

然而,在进行大规模的环境匹配时,ICP 和 NDT 作为传统的点云匹配方法,都显示无法胜任所需的通用性和可扩展性,计算上也缺乏效率。

图 5. ICP 与 NDT 在不同像素下的性能对比

图 6. ICP 与 NDT 在转弯时的性能对比


地图匹配深度学习

基于深度学习的地图匹配一直存在着相当的挑战性,这与现有解决方案中常用的模型的局限性有关。现有方案把地图匹配理解为图神经网络(GNN)或序列到序列(seq2seq)结构,然而,这些方案无法完全捕捉 3D 点云中的空间分布和上下文线索,也无法进行并行处理,因而地图匹配的精度和速度都不理想。而且,现有解决方案常常会对原始密集的 3D 点云进行下采样操作,而导致局部几何信息的退化。

深度学习的最新发展,尤其是在 Transformer 方面的研究,开始改变这个现状。

Transformer 同时考虑数据点的内部相关性轨迹,以及输入轨迹和输出路径之间的外部关系,通过并行的方式使用自我和多头注意机制提取多组特征表达,从而实现更精确和快速的匹配。以下,我们将细节讨论基于 Transformer 的 ICP 和 NDT 的深度学习模型。

DCP:基于 Transformer 的 ICP

ICP 及其变体为地图匹配提供了简单且易于实现的迭代方法,但是由于算法本身的局限性,常常收敛到虚假的局部最优。来自于自然语言处理和计算机视觉的最新发展 Transformer 提供了新的灵感。DCP 设计了一个模块,在获取本地特征值之后,通过捕获自我注意力和有条件的注意力机制来学习上下文线索。

图 7. DCP 网络架构

DCP 由三部分组成:

(1)DGCNN 模块将输入 3D 点云映射到固定的表征排列,

(2)基于 Transformer 的注意力模块,结合指针网络预测点云之间的软匹配,

(3)奇异值分解层(SVD)预测运动转变。

注意力模块的加入使得 DCP 模型能足够可靠地一次性提取对齐两个输入 3D 点云间的运动所需的对应关系,并且还可以通过经典 ICP 的迭代方法继续提高。相应的实验展示 DCP 不仅高效,而且优于 ICP 和它的变体。

图 8. DCP 性能对比

NTD-Transformer:基于 Transformer 的 NDT

NDT-Transformer 可以实现基于 3D 点云的实时和大规模地点识别。它采用三维空间的概率分布变换来压缩原始、密集的 3D 点云作为 NDT 单元,以提供几何形状描述表达。然后,利用 Transformer 网络从一组 NDT 单元中学习全局描述表征。受益于 NDT 和 Transformer 网络, NDT-Transformer 学习到的全局描述表征同时丰富了几何和上下文信息,然后使用查询数据库进行表征匹配检索,实现地点识别。与单独的 NDT 相比,NDT-Transformer 性能有明显的提升。

图 9. NDT-Transformer 网络架构

NDT-Transformer 主要由三部分组成:

1)由点变换和不确定性反向传播组成的 NDT 表达模块,

2)残差 Transformer 编码器,

3) 局部聚合描述表达的描述向量 (NetVLAD)。

在将 3D 点云 NDT 化之后,与大多数人的现有方法利用 KNN 分组对上下文信息建模的方法不同, NDT-Transformer 使用注意力机制来学习底层地标(NDT 单元)之间的上下文,并采用残差 Transformer 编码器聚合一个 NDT 单元与其他 NDT 单元的上下文线索,以增加表征的独特性。

然后, NDT-Transformer 使用 NetVLAD 代替最大池化层来提高 3D 点云描述的排列不变性。NetVLAD 通过记录本地特征与参照特征之间区别的统计信息以及总和,将一组本地描述聚合生成一个全局描述表征向量。最后使用一个多层感知器 (MLP),将一组 NDT 单元描述表征融合为一个固定大小的全局描述表征向量。

NDT-Transformer 通过分层地聚合和增强局部特征,从而在运行时间和匹配结果上获得极好的表现。在 Oxford Robocar 数据集上的实验结果表明 NDT-Transformer 能够成功地找到 SOTA 性能和运行时间之间的妥协。

图 10. NDT-Transformer 性能对比


小结

现有的研究中,并没有对都是基于 Transformer 的 DCP 和 NDT-Transformer 精确性进行直接对比,但理论上来讲, NDT-Transformer 在计算效率上具有更高的通用性和可扩展性。虽然因为篇幅的原因,我们无法详尽地含括所有的深度学习在地图匹配方面的应有,但令人欣喜的是最新的深度学习发展,尤其是 Transformer,通过引入自注意力机制和上下文的信息提取,给地图匹配算法提供了新的灵感和研究方向。

参考文献

1.Development of a GPU-Accelerated NDT LocalizationAlgorithm for GNSS-Denied Urban Areas,Keon Woo Jang, Woo Jae Jeong and Yeonsik Kang, Sensors, 2022.

2.NDT-Transformer: Large-Scale 3D Point Cloud Localisation using the Normal Distribution Transform Representation,Zhicheng Zhou, Cheng Zhao, Daniel Adolfsson, Songzhi Su, Yang Gao, Tom Duckett and Li Sun, Arxiv, 2021.

3.Deep Closest Point: Learning Representations for Point Cloud Registration, Yue Wang and Justin M. Solomon, Arxiv, 2019.

4.Map-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform, Heber Sobreira, Carlos Miguel Correia da Costa, Ivo M. Sousa and Luís F. Rocha, Springer, 2019.

5.3D Scan Registration Based Localization for Autonomous Vehicles - A Comparison of NDT and ICP under Realistic Conditions, Su Pang, Daniel Kent, Xi Cai, Hothaifa Al-Qassab, Daniel Morris and Hayder Radha, Arxiv, 2018.

转载自汽车电子与软件,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 50浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 181浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 135浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 80浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 195浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦