Linux中断子系统系列之基础概念篇

嵌入式客栈 2020-06-10 00:00
关注、星标 嵌入式客栈 ,干货及时送达


[导读] 对于驱动开发而言,中断机制是一个无法绕开的主题,翻看了很多资料书籍,读来读去总觉得没明白,所以尝试自底向上的分析一下Linux中断子系统的内在设计以及运行机制。将陆续分享相关的学习原创笔记,敬请关注期待。

代码分析基于内核5.4.31

如有兴趣,不妨星标一下小号,这样后续笔记将及时置顶出现在你的面前。

啥是中断/异常

处理器的典型任务是处理一系列预定的程序。为了通知处理器某些事件,有时需要中断当前正在处理的任务。中断可以由程序触发,也可以从外设异步触发。如果发生中断请求IRQ,则处理器将执行预定的中断服务程序ISR。CPU需要能处理软件错误,例如除零或显式中断调用(例如syscalls)。硬件中断由中断控制器路由到指定的处理器(如x86系统的IO-APIC)。

操作系统的总体运行机制属于事件驱动(event-driven)机制。

中断

  • 由外部硬件生成的异步事件。
  • 中断控制器芯片将每个IRQ输入映射到一个中断向量,该中断向量定位相应的中断服务程序

一个 IRQ 是来自某个设备的一个中断请求。可能的中断请求源:来自一个硬件引脚,或来自一个数据包。多个设备可能连接到同一个硬件引脚,从而共享一个 IRQ。抽象成中断请求事件,有哪些可能的事件呢:

  • GPIO 中断请求,包括边沿、电平模式
  • 外设 I2C的start/stop事件
  • USB枚举,报文
  • 网口......

异常(陷阱):由软件生成的同步事件,比如前面提到的除零,页错误

ARM32/ARM64硬件架构对比

ARM32

这里以ARMv7 为例进行描述,对于ARM32而言,CPU具有9大处理模式:

其中encoding是指的CPSR程序状态寄存器中的M[4:0],对于ARMv7而言,权限等级如下:

  • PL0-适用于用户应用程序供应商,例如从App Store下载的应用程序。
  • PL1-丰富的OS供应商,例如Android使用的Linux内核。
  • PL2-虚拟机监控程序供应商。
  • (Secure PL0)安全PL0-受信任的OS供应商提供的受信任的OS应用程序。
  • (Secure PL1)安全PL1-受信任的操作系统。
  • (Secure PL)安全PL1-提供安全固件的OEM。

ARMv7采用通用中断控制器GIC V2进行中断分发控制。

AArch64

自《Programmer’s Guide for ARMv8-A》,armv8 引入64位ARM架构,向后兼容。

  • Cortex-A53处理器是一个中档、低功耗处理器,在单个集群中有一个到四个核,每个核都有一个L1缓存子系统、一个可选的集成GICv3/4(通用中断控制器Generic Interrupt Controller)接口和一个可选的L2缓存控制器。
  • Cortex-A57处理器针对移动和企业计算应用,包括计算密集型64位应用,如高端计算机、平板电脑和服务器产品。它可以与Cortex-A53处理器一起采用 big.LITTLE技术(有的也称为异步多核架构)成为一个处理器。

ARMv8-A体系结构引入了许多更改,这些更改使得可以设计性能明显更高的处理器实现:

  • 更大的物理地址寻址能力:处理器可以访问超过4GB的物理内存。
  • 64位虚拟寻址:这样可以使虚拟内存超过4GB的限制。这对于使用内存映射文件I / O或稀疏寻址的现代台式机和服务器软件很重要。
  • 自动事件信号:利于实现低功耗、高性能的自旋锁。
  • 更大寄存器文件:31个64位通用寄存器可提高性能并减少栈开销。
  • 高效的64位立即数生成:较少对文字池的依赖。
  • 更大的PC指针相对寻址空间:+/- 4GB寻址范围,可在共享库和与位置无关的可执行文件中进行有效的数据寻址。
  • 额外的16KB和64KB翻译颗粒:这样可以减少转换后备缓冲区(TLB)的丢失率和页面遍历的深度。
  • 新的异常模型: 降低了操作系统和管理程序软件的复杂性。
  • 高效的缓存管理: 用户空间缓存操作提高了动态代码生成效率。使用数据高速缓存零指令快速清除数据高速缓存。
  • 硬件加速密码器:提高3倍至10倍较好的软件加密性能。这对于小颗粒的解密和太小而无法有效地卸载到硬件加速器上的加密非常有用,例如https。
  • Load-Acquire, Store-Release指令:针对C++11,C11,Java内存模型而设计。它们通过消除显式的内存屏障指令来提高线程安全代码的性能。
  • NEON双精度浮点高级SIMD:这使SIMD矢量化可以应用于更广泛的算法集,例如科学计算,高性能计算(HPC)和超级计算机。

上面谈到了新的异常模型,这里来看一下具体是指什么:

在ARMv8中,程序运行总是处于四个异常级别之一。在AArch64中,异常级别确定特权级别,类似于ARMv7中定义的特权级别。异常级别确定特权级别,因此在ELn程序对应于特权PLn。类似地,n值大于另一个值的异常级别处于较高的异常级别。数量比另一个少的异常级别被描述为处于较低的异常级别。

异常级别提供了适用于ARMv8架构所有运行状态的软件执行特权的逻辑隔离。它类似于计算机科学中常见的分层保护域概念。

  • EL0:普通用户应用程序。
  • EL1:操作系统内核通常描述为特权。
  • EL2:管理程序(Hypervisor)。
  • EL3:底层固件,包括安全监视器。

通常,一个软件(例如应用程序,操作系统的内核或系统管理程序)占据一个异常级别。该规则的一个例外是内核内虚拟机管理程序,例如KVM,它们在EL2和EL1上都可运行。

可运行在AArch32以及AArch64模式下:

由图可见:在AArch32模式下,EL0相对于usr 模式,而EL1则相当于Svc、Abt、Und、FIQ、IRQ、Sys模式,而EL2则相当于Hyp模式。

ARMv8-A提供两种安全状态,即安全和非安全。非安全状态也称为正常模式(normal world)。这使操作系统(OS)与受信任的OS在同一硬件上并行运行,并提供了针对某些软件攻击和硬件攻击的保护。ARM TrustZone技术使系统可以在普通和安全环境之间进行分区。与ARMv7-A架构一样,安全监视器充当在普通和安全环境之间移动的网关。

ARMv8-A 在正常模式下还提供了对虚拟化的支持。从而虚拟机监控程序或虚拟机管理器(VMM)代码可以在系统上运行,并承载多个客户操作系统。每个客户操作系统本质上都运行在一个虚拟机上。每个操作系统就不会意识到它正在与其他客户操作系统共享CPU。

ARMv8-A采用通用中断控制器GIC V3进行中断分发控制。

在AArch64中,异常可以是(synchronous exception)同步的,也可以是( asynchronous exception)异步的。

同步异常:如果异常是在执行或试图执行指令流时产生,并且返回地址提供导致该异常指令的详细信息,则将其描述为同步异常。

异步异常:异步异常不是由执行指令生成的,而返回地址可能并不总是提供导致异常的细节。异步异常的来源是IRQ(正常优先级中断),FIQ(快速中断)或SError(系统错误)。系统错误有许多可能的原因,最常见的是异步数据中止(例如,由将脏数据从缓存线写到外部内存而触发的中止)。

啥是GIC?

GIC是一种先进的微控制器总线架构(AMBA)和ARM架构兼容的系统片上(SoC)外设。它是一种高性能的、区域优化的中断控制器,具有芯片上的AMBA总线接口,根据配置,它符合AMBA高级可扩展接口(AXI)协议或AMBA AHB-Lite协议。

这里仅仅参考ARM官方文档将其中一部分从概念上加以介绍,过多细节比较枯燥就不做介绍了,个人认为仅需要从概念上去理解一下大致原理即可,没有必要去进行更深层的挖掘。除非你需要去修改这一层次的代码。


具体一点来看,GIC的总体框架如下:

  • 处理单元Processing element (PE),也即是核
  • 中断翻译服务组件Interrupt Translation Service components (ITS)
  • 中断路由基础设施Interrupt Routing Infrastructure (IRI)

比如一个SPI的中断分发路由机制如下:


分发器 Distributor:分发服务器执行中断优先级排序,并将spi和SGIs分发到连接到系统中PEs,从而进入CPU处理。如果我们将这些都看成黑盒子,可以简化理解一下:

对于GICv2与GICv3的主要显著区别是GICv3可以支持更多核,GICv3可支持超过8核的处理器。

异常/中断来了咋办?

  • 对于ARM处理器而言,异常/中断到来后,处理器对应进入不同的处理器模式(FIQ/IRQ/UND/ABT).
  • 对于ARM64处理器而言,因为处理器已经没有处理器模式机制了,因此对应变成进入何种异常级别(exception level)。处理器复位时默认进入最高级别的exception level,例如如果处理器最高支持的EL是EL2,复位后系统将处于EL2。对于那些正常通过system call产生的异常,处理器会切换到哪一个exception level这个问题也很好回答,SVC、HVC和SMC将进入处理器设定的异常级别。

然而对于异常/中断的处理,说到底还是需要进入相应的异常/中断句柄(process handler)进行处理,那么怎么进入的呢?这里自然就引入了异常向量表了,这里来看看异常向量表在哪里实现的。这里个人认为理解一下大致概念也就可以了。

ARM

对于ARMv7而言,位于./arch/arm/kernel/entry-v7m.s

ENTRY(vector_table)
 .long 0   @ 0 - Reset stack pointer
 .long __invalid_entry  @ 1 - Reset
 .long __invalid_entry  @ 2 - NMI
 .long __invalid_entry  @ 3 - HardFault
 .long __invalid_entry  @ 4 - MemManage
 .long __invalid_entry  @ 5 - BusFault
 .long __invalid_entry  @ 6 - UsageFault
 .long __invalid_entry  @ 7 - Reserved
 .long __invalid_entry  @ 8 - Reserved
 .long __invalid_entry  @ 9 - Reserved
 .long __invalid_entry  @ 10 - Reserved
 .long vector_swi  @ 11 - SVCall
 .long __invalid_entry  @ 12 - Debug Monitor
 .long __invalid_entry  @ 13 - Reserved
 .long __pendsv_entry  @ 14 - PendSV
 .long __invalid_entry  @ 15 - SysTick
 .rept CONFIG_CPU_V7M_NUM_IRQ
 .long __irq_entry  @ External Interrupts
 .endr
 .align 2
 .globl exc_ret
exc_ret:
 .space 4

对于其他的ARM架构而言,位于./arch/arm/kernel/entry-armv.S,贴上部分代码

 *
 * Interrupt dispatcher
 */
 vector_stub irq, IRQ_MODE, 4

 .long __irq_usr   @  0  (USR_26 / USR_32)
 .long __irq_invalid   @  1  (FIQ_26 / FIQ_32)
 .long __irq_invalid   @  2  (IRQ_26 / IRQ_32)
 .long __irq_svc   @  3  (SVC_26 / SVC_32)
 .long __irq_invalid   @  4
 .long __irq_invalid   @  5
 .long __irq_invalid   @  6
 .long __irq_invalid   @  7
 .long __irq_invalid   @  8
 .long __irq_invalid   @  9
 .long __irq_invalid   @  a
 .long __irq_invalid   @  b
 .long __irq_invalid   @  c
 .long __irq_invalid   @  d
 .long __irq_invalid   @  e
 .long __irq_invalid   @  f

/*
 * Data abort dispatcher
 * Enter in ABT mode, spsr = USR CPSR, lr = USR PC
 */

 vector_stub dabt, ABT_MODE, 8

 .long __dabt_usr   @  0  (USR_26 / USR_32)
 .long __dabt_invalid   @  1  (FIQ_26 / FIQ_32)
 .long __dabt_invalid   @  2  (IRQ_26 / IRQ_32)
 .long __dabt_svc   @  3  (SVC_26 / SVC_32)
 .long __dabt_invalid   @  4
 .long __dabt_invalid   @  5
 .long __dabt_invalid   @  6
 .long __dabt_invalid   @  7
 .long __dabt_invalid   @  8
 .long __dabt_invalid   @  9
 .long __dabt_invalid   @  a
 .long __dabt_invalid   @  b
 .long __dabt_invalid   @  c
 .long __dabt_invalid   @  d
 .long __dabt_invalid   @  e
 .long __dabt_invalid   @  f

/*
 * Prefetch abort dispatcher
 * Enter in ABT mode, spsr = USR CPSR, lr = USR PC
 */

 vector_stub pabt, ABT_MODE, 4

 .long __pabt_usr   @  0 (USR_26 / USR_32)
 .long __pabt_invalid   @  1 (FIQ_26 / FIQ_32)
 .long __pabt_invalid   @  2 (IRQ_26 / IRQ_32)
 .long __pabt_svc   @  3 (SVC_26 / SVC_32)
 .long __pabt_invalid   @  4
 .long __pabt_invalid   @  5
 .long __pabt_invalid   @  6
 .long __pabt_invalid   @  7
 .long __pabt_invalid   @  8
 .long __pabt_invalid   @  9
 .long __pabt_invalid   @  a
 .long __pabt_invalid   @  b
 .long __pabt_invalid   @  c
 .long __pabt_invalid   @  d
 .long __pabt_invalid   @  e
 .long __pabt_invalid   @  f

/*
 * Undef instr entry dispatcher
 * Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC
 */

 vector_stub und, UND_MODE

 .long __und_usr   @  0 (USR_26 / USR_32)
 .long __und_invalid   @  1 (FIQ_26 / FIQ_32)
 .long __und_invalid   @  2 (IRQ_26 / IRQ_32)
 .long __und_svc   @  3 (SVC_26 / SVC_32)
 .long __und_invalid   @  4
 .long __und_invalid   @  5
 .long __und_invalid   @  6
 .long __und_invalid   @  7
 .long __und_invalid   @  8
 .long __und_invalid   @  9
 .long __und_invalid   @  a
 .long __und_invalid   @  b
 .long __und_invalid   @  c
 .long __und_invalid   @  d
 .long __und_invalid   @  e
 .long __und_invalid   @  f

 .align 5
.....................
/*=============================================================================
 * FIQ "NMI" handler
 *-----------------------------------------------------------------------------
 */

 vector_stub fiq, FIQ_MODE, 4

 .long __fiq_usr   @  0  (USR_26 / USR_32)
 .long __fiq_svc   @  1  (FIQ_26 / FIQ_32)
 .long __fiq_svc   @  2  (IRQ_26 / IRQ_32)
 .long __fiq_svc   @  3  (SVC_26 / SVC_32)
 .long __fiq_svc   @  4
 .long __fiq_svc   @  5
 .long __fiq_svc   @  6
 .long __fiq_abt   @  7
 .long __fiq_svc   @  8
 .long __fiq_svc   @  9
 .long __fiq_svc   @  a
 .long __fiq_svc   @  b
 .long __fiq_svc   @  c
 .long __fiq_svc   @  d
 .long __fiq_svc   @  e
 .long __fiq_svc   @  f

 .globl vector_fiq

 .section .vectors, "ax", %progbits
.L__vectors_start:
 W(b) vector_rst
 W(b) vector_und
 W(ldr) pc, .L__vectors_start + 0x1000
 W(b) vector_pabt
 W(b) vector_dabt
 W(b) vector_addrexcptn
 W(b) vector_irq
 W(b) vector_fiq

 .data
 .align 2

 .globl cr_alignment
cr_alignment:
 .space 4

ARM64

位于./arch/arm64/kernel/entry.S,贴上部分代码

 .pushsection ".entry.text""ax"

 .align 11
ENTRY(vectors)
 kernel_ventry 1, sync_invalid   // Synchronous EL1t
 kernel_ventry 1, irq_invalid   // IRQ EL1t
 kernel_ventry 1, fiq_invalid   // FIQ EL1t
 kernel_ventry 1, error_invalid  // Error EL1t

 kernel_ventry 1, sync    // Synchronous EL1h
 kernel_ventry 1, irq    // IRQ EL1h
 kernel_ventry 1, fiq_invalid   // FIQ EL1h
 kernel_ventry 1, error   // Error EL1h

 kernel_ventry 0, sync    // Synchronous 64-bit EL0
 kernel_ventry 0, irq    // IRQ 64-bit EL0
 kernel_ventry 0, fiq_invalid   // FIQ 64-bit EL0
 kernel_ventry 0, error   // Error 64-bit EL0

#ifdef CONFIG_COMPAT
 kernel_ventry 0, sync_compat, 32  // Synchronous 32-bit EL0
 kernel_ventry 0, irq_compat, 32  // IRQ 32-bit EL0
 kernel_ventry 0, fiq_invalid_compat, 32 // FIQ 32-bit EL0
 kernel_ventry 0, error_compat, 32  // Error 32-bit EL0
#else
 kernel_ventry 0, sync_invalid, 32  // Synchronous 32-bit EL0
 kernel_ventry 0, irq_invalid, 32  // IRQ 32-bit EL0
 kernel_ventry 0, fiq_invalid, 32  // FIQ 32-bit EL0
 kernel_ventry 0, error_invalid, 32  // Error 32-bit EL0
#endif
END(vectors)

总结一下

对于做嵌入式开发,尤其需要做底层驱动开发的小伙伴们,较深入的理解一下更为底层异常/中断运行的机制,对于具体驱动开发而言是非常有帮助的。本文参考内核代码,以及ARM官方规格书大致梳理了Linux中断子系统的基础概念,以及异常/中断如何进入到CPU,以及相应的入口在哪里实现定义的。后续为逐步深入分析中断底层如何建模抽象的,采用自底向上的分析策略进而分析用户空间的调用接口,敬请关注期待。

本文辛苦原创分享,水平所限,文中估计也有蛮多错误,希望看到的同学帮忙指正,如果觉得有价值也请帮忙点赞转发支持,不胜感激!

END

往期精彩推荐,点击即可阅读




▲Linux内核中I2C总线及设备长啥样?  [推荐]
手把手教系列之状滤波器设计实现
手把手教系列之IIR数字滤波器设计实现

嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 172浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 145浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 104浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 152浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 171浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 207浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 190浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 162浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 185浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 197浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 153浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 139浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 121浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 130浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 212浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦